| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1red |
|- ( D e. ( NN \ []NN ) -> 1 e. RR ) |
| 2 |
|
1nn0 |
|- 1 e. NN0 |
| 3 |
2
|
a1i |
|- ( D e. ( NN \ []NN ) -> 1 e. NN0 ) |
| 4 |
|
0nn0 |
|- 0 e. NN0 |
| 5 |
4
|
a1i |
|- ( D e. ( NN \ []NN ) -> 0 e. NN0 ) |
| 6 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 7 |
6
|
nncnd |
|- ( D e. ( NN \ []NN ) -> D e. CC ) |
| 8 |
7
|
sqrtcld |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. CC ) |
| 9 |
8
|
mul01d |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` D ) x. 0 ) = 0 ) |
| 10 |
9
|
oveq2d |
|- ( D e. ( NN \ []NN ) -> ( 1 + ( ( sqrt ` D ) x. 0 ) ) = ( 1 + 0 ) ) |
| 11 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 12 |
10 11
|
eqtr2di |
|- ( D e. ( NN \ []NN ) -> 1 = ( 1 + ( ( sqrt ` D ) x. 0 ) ) ) |
| 13 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 14 |
13
|
a1i |
|- ( D e. ( NN \ []NN ) -> ( 1 ^ 2 ) = 1 ) |
| 15 |
|
sq0 |
|- ( 0 ^ 2 ) = 0 |
| 16 |
15
|
oveq2i |
|- ( D x. ( 0 ^ 2 ) ) = ( D x. 0 ) |
| 17 |
7
|
mul01d |
|- ( D e. ( NN \ []NN ) -> ( D x. 0 ) = 0 ) |
| 18 |
16 17
|
eqtrid |
|- ( D e. ( NN \ []NN ) -> ( D x. ( 0 ^ 2 ) ) = 0 ) |
| 19 |
14 18
|
oveq12d |
|- ( D e. ( NN \ []NN ) -> ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) = ( 1 - 0 ) ) |
| 20 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 21 |
19 20
|
eqtrdi |
|- ( D e. ( NN \ []NN ) -> ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) = 1 ) |
| 22 |
|
oveq1 |
|- ( a = 1 -> ( a + ( ( sqrt ` D ) x. b ) ) = ( 1 + ( ( sqrt ` D ) x. b ) ) ) |
| 23 |
22
|
eqeq2d |
|- ( a = 1 -> ( 1 = ( a + ( ( sqrt ` D ) x. b ) ) <-> 1 = ( 1 + ( ( sqrt ` D ) x. b ) ) ) ) |
| 24 |
|
oveq1 |
|- ( a = 1 -> ( a ^ 2 ) = ( 1 ^ 2 ) ) |
| 25 |
24
|
oveq1d |
|- ( a = 1 -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
| 26 |
25
|
eqeq1d |
|- ( a = 1 -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 27 |
23 26
|
anbi12d |
|- ( a = 1 -> ( ( 1 = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( 1 = ( 1 + ( ( sqrt ` D ) x. b ) ) /\ ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
| 28 |
|
oveq2 |
|- ( b = 0 -> ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. 0 ) ) |
| 29 |
28
|
oveq2d |
|- ( b = 0 -> ( 1 + ( ( sqrt ` D ) x. b ) ) = ( 1 + ( ( sqrt ` D ) x. 0 ) ) ) |
| 30 |
29
|
eqeq2d |
|- ( b = 0 -> ( 1 = ( 1 + ( ( sqrt ` D ) x. b ) ) <-> 1 = ( 1 + ( ( sqrt ` D ) x. 0 ) ) ) ) |
| 31 |
|
oveq1 |
|- ( b = 0 -> ( b ^ 2 ) = ( 0 ^ 2 ) ) |
| 32 |
31
|
oveq2d |
|- ( b = 0 -> ( D x. ( b ^ 2 ) ) = ( D x. ( 0 ^ 2 ) ) ) |
| 33 |
32
|
oveq2d |
|- ( b = 0 -> ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) ) |
| 34 |
33
|
eqeq1d |
|- ( b = 0 -> ( ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) = 1 ) ) |
| 35 |
30 34
|
anbi12d |
|- ( b = 0 -> ( ( 1 = ( 1 + ( ( sqrt ` D ) x. b ) ) /\ ( ( 1 ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( 1 = ( 1 + ( ( sqrt ` D ) x. 0 ) ) /\ ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) = 1 ) ) ) |
| 36 |
27 35
|
rspc2ev |
|- ( ( 1 e. NN0 /\ 0 e. NN0 /\ ( 1 = ( 1 + ( ( sqrt ` D ) x. 0 ) ) /\ ( ( 1 ^ 2 ) - ( D x. ( 0 ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( 1 = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 37 |
3 5 12 21 36
|
syl112anc |
|- ( D e. ( NN \ []NN ) -> E. a e. NN0 E. b e. NN0 ( 1 = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
| 38 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( 1 e. ( Pell1QR ` D ) <-> ( 1 e. RR /\ E. a e. NN0 E. b e. NN0 ( 1 = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 39 |
1 37 38
|
mpbir2and |
|- ( D e. ( NN \ []NN ) -> 1 e. ( Pell1QR ` D ) ) |