| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) <-> ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
| 2 |
|
1red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 e. RR ) |
| 3 |
|
simplrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. NN0 ) |
| 4 |
3
|
nn0red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a e. RR ) |
| 5 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 6 |
5
|
ad3antrrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN ) |
| 7 |
6
|
nnnn0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. NN0 ) |
| 8 |
7
|
nn0red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> D e. RR ) |
| 9 |
7
|
nn0ge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ D ) |
| 10 |
8 9
|
resqrtcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( sqrt ` D ) e. RR ) |
| 11 |
|
simplrr |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. NN0 ) |
| 12 |
11
|
nn0red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> b e. RR ) |
| 13 |
10 12
|
remulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( sqrt ` D ) x. b ) e. RR ) |
| 14 |
4 13
|
readdcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a + ( ( sqrt ` D ) x. b ) ) e. RR ) |
| 15 |
|
2nn0 |
|- 2 e. NN0 |
| 16 |
15
|
a1i |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 2 e. NN0 ) |
| 17 |
11 16
|
nn0expcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( b ^ 2 ) e. NN0 ) |
| 18 |
7 17
|
nn0mulcld |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. NN0 ) |
| 19 |
18
|
nn0ge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( D x. ( b ^ 2 ) ) ) |
| 20 |
18
|
nn0red |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( D x. ( b ^ 2 ) ) e. RR ) |
| 21 |
2 20
|
addge02d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 0 <_ ( D x. ( b ^ 2 ) ) <-> 1 <_ ( ( D x. ( b ^ 2 ) ) + 1 ) ) ) |
| 22 |
19 21
|
mpbid |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ ( ( D x. ( b ^ 2 ) ) + 1 ) ) |
| 23 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 24 |
23
|
a1i |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 ^ 2 ) = 1 ) |
| 25 |
|
nn0cn |
|- ( a e. NN0 -> a e. CC ) |
| 26 |
25
|
ad2antrl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> a e. CC ) |
| 27 |
26
|
sqcld |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( a ^ 2 ) e. CC ) |
| 28 |
5
|
ad2antrr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> D e. NN ) |
| 29 |
28
|
nncnd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> D e. CC ) |
| 30 |
|
nn0cn |
|- ( b e. NN0 -> b e. CC ) |
| 31 |
30
|
ad2antll |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> b e. CC ) |
| 32 |
31
|
sqcld |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( b ^ 2 ) e. CC ) |
| 33 |
29 32
|
mulcld |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( D x. ( b ^ 2 ) ) e. CC ) |
| 34 |
|
1cnd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> 1 e. CC ) |
| 35 |
27 33 34
|
subaddd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( D x. ( b ^ 2 ) ) + 1 ) = ( a ^ 2 ) ) ) |
| 36 |
35
|
biimpa |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( ( D x. ( b ^ 2 ) ) + 1 ) = ( a ^ 2 ) ) |
| 37 |
36
|
eqcomd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( a ^ 2 ) = ( ( D x. ( b ^ 2 ) ) + 1 ) ) |
| 38 |
22 24 37
|
3brtr4d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 ^ 2 ) <_ ( a ^ 2 ) ) |
| 39 |
|
0le1 |
|- 0 <_ 1 |
| 40 |
39
|
a1i |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ 1 ) |
| 41 |
3
|
nn0ge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ a ) |
| 42 |
2 4 40 41
|
le2sqd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 1 <_ a <-> ( 1 ^ 2 ) <_ ( a ^ 2 ) ) ) |
| 43 |
38 42
|
mpbird |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ a ) |
| 44 |
8 9
|
sqrtge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( sqrt ` D ) ) |
| 45 |
11
|
nn0ge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ b ) |
| 46 |
10 12 44 45
|
mulge0d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 0 <_ ( ( sqrt ` D ) x. b ) ) |
| 47 |
4 13
|
addge01d |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> ( 0 <_ ( ( sqrt ` D ) x. b ) <-> a <_ ( a + ( ( sqrt ` D ) x. b ) ) ) ) |
| 48 |
46 47
|
mpbid |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> a <_ ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 49 |
2 4 14 43 48
|
letrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 50 |
49
|
adantrl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 51 |
|
simprl |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> A = ( a + ( ( sqrt ` D ) x. b ) ) ) |
| 52 |
50 51
|
breqtrrd |
|- ( ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) /\ ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ A ) |
| 53 |
52
|
ex |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR ) /\ ( a e. NN0 /\ b e. NN0 ) ) -> ( ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ A ) ) |
| 54 |
53
|
rexlimdvva |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR ) -> ( E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) -> 1 <_ A ) ) |
| 55 |
54
|
expimpd |
|- ( D e. ( NN \ []NN ) -> ( ( A e. RR /\ E. a e. NN0 E. b e. NN0 ( A = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) -> 1 <_ A ) ) |
| 56 |
1 55
|
sylbid |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell1QR ` D ) -> 1 <_ A ) ) |
| 57 |
56
|
imp |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell1QR ` D ) ) -> 1 <_ A ) |