Step |
Hyp |
Ref |
Expression |
1 |
|
fzfi |
|- ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin |
2 |
|
xpfi |
|- ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin /\ ( 0 ... ( ( abs ` a ) - 1 ) ) e. Fin ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin ) |
3 |
1 1 2
|
mp2an |
|- ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin |
4 |
|
isfinite |
|- ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) e. Fin <-> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om ) |
5 |
3 4
|
mpbi |
|- ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om |
6 |
|
nnenom |
|- NN ~~ _om |
7 |
6
|
ensymi |
|- _om ~~ NN |
8 |
|
sdomentr |
|- ( ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< _om /\ _om ~~ NN ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN ) |
9 |
5 7 8
|
mp2an |
|- ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN |
10 |
|
ensym |
|- ( { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN -> NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) |
11 |
10
|
ad2antll |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) |
12 |
|
sdomentr |
|- ( ( ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< NN /\ NN ~~ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) |
13 |
9 11 12
|
sylancr |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ~< { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) |
14 |
|
opabssxp |
|- { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } C_ ( NN X. NN ) |
15 |
14
|
sseli |
|- ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> d e. ( NN X. NN ) ) |
16 |
|
simprrl |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 1st ` d ) e. NN ) |
17 |
16
|
nnzd |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 1st ` d ) e. ZZ ) |
18 |
|
simpllr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> a e. ZZ ) |
19 |
|
simplr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> a =/= 0 ) |
20 |
|
nnabscl |
|- ( ( a e. ZZ /\ a =/= 0 ) -> ( abs ` a ) e. NN ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( abs ` a ) e. NN ) |
22 |
|
zmodfz |
|- ( ( ( 1st ` d ) e. ZZ /\ ( abs ` a ) e. NN ) -> ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) |
23 |
17 21 22
|
syl2anc |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) |
24 |
|
simprrr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 2nd ` d ) e. NN ) |
25 |
24
|
nnzd |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( 2nd ` d ) e. ZZ ) |
26 |
|
zmodfz |
|- ( ( ( 2nd ` d ) e. ZZ /\ ( abs ` a ) e. NN ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) |
27 |
25 21 26
|
syl2anc |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) |
28 |
23 27
|
jca |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) |
29 |
28
|
ex |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) |
30 |
|
elxp7 |
|- ( d e. ( NN X. NN ) <-> ( d e. ( _V X. _V ) /\ ( ( 1st ` d ) e. NN /\ ( 2nd ` d ) e. NN ) ) ) |
31 |
|
opelxp |
|- ( <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) <-> ( ( ( 1st ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) e. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) |
32 |
29 30 31
|
3imtr4g |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. ( NN X. NN ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) |
33 |
15 32
|
syl5 |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) ) |
34 |
33
|
imp |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) |
35 |
34
|
adantlrr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) /\ d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. e. ( ( 0 ... ( ( abs ` a ) - 1 ) ) X. ( 0 ... ( ( abs ` a ) - 1 ) ) ) ) |
36 |
|
fveq2 |
|- ( d = e -> ( 1st ` d ) = ( 1st ` e ) ) |
37 |
36
|
oveq1d |
|- ( d = e -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) ) |
38 |
|
fveq2 |
|- ( d = e -> ( 2nd ` d ) = ( 2nd ` e ) ) |
39 |
38
|
oveq1d |
|- ( d = e -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) |
40 |
37 39
|
opeq12d |
|- ( d = e -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) |
41 |
13 35 40
|
fphpd |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) |
42 |
|
eleq1w |
|- ( b = f -> ( b e. NN <-> f e. NN ) ) |
43 |
|
eleq1w |
|- ( c = g -> ( c e. NN <-> g e. NN ) ) |
44 |
42 43
|
bi2anan9 |
|- ( ( b = f /\ c = g ) -> ( ( b e. NN /\ c e. NN ) <-> ( f e. NN /\ g e. NN ) ) ) |
45 |
|
oveq1 |
|- ( b = f -> ( b ^ 2 ) = ( f ^ 2 ) ) |
46 |
|
oveq1 |
|- ( c = g -> ( c ^ 2 ) = ( g ^ 2 ) ) |
47 |
46
|
oveq2d |
|- ( c = g -> ( D x. ( c ^ 2 ) ) = ( D x. ( g ^ 2 ) ) ) |
48 |
45 47
|
oveqan12d |
|- ( ( b = f /\ c = g ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) ) |
49 |
48
|
eqeq1d |
|- ( ( b = f /\ c = g ) -> ( ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a <-> ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) |
50 |
44 49
|
anbi12d |
|- ( ( b = f /\ c = g ) -> ( ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) <-> ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) ) |
51 |
50
|
cbvopabv |
|- { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } = { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } |
52 |
51
|
eleq2i |
|- ( e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } <-> e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) |
53 |
52
|
biimpi |
|- ( e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) |
54 |
|
elopab |
|- ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } <-> E. b E. c ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) |
55 |
|
elopab |
|- ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } <-> E. f E. g ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) ) |
56 |
|
simp3ll |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> b e. NN ) |
57 |
56
|
3expb |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> b e. NN ) |
58 |
57
|
3ad2ant1 |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> b e. NN ) |
59 |
|
simp3lr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> c e. NN ) |
60 |
59
|
3expb |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> c e. NN ) |
61 |
60
|
3ad2ant1 |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> c e. NN ) |
62 |
|
simp1lr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a e. ZZ ) |
63 |
62
|
3adant1r |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a e. ZZ ) |
64 |
|
simp-4l |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> D e. NN ) |
65 |
64
|
3ad2ant1 |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> D e. NN ) |
66 |
|
simp-4r |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> -. ( sqrt ` D ) e. QQ ) |
67 |
66
|
3ad2ant1 |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> -. ( sqrt ` D ) e. QQ ) |
68 |
|
simp2ll |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> f e. NN ) |
69 |
68
|
3adant2l |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> f e. NN ) |
70 |
|
simp2lr |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> g e. NN ) |
71 |
70
|
3adant2l |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> g e. NN ) |
72 |
|
simp2l |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> e = <. f , g >. ) |
73 |
|
simp1rl |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> d = <. b , c >. ) |
74 |
|
simp3l |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> d =/= e ) |
75 |
|
simp3 |
|- ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> d =/= e ) |
76 |
|
simp2 |
|- ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> d = <. b , c >. ) |
77 |
|
simp1 |
|- ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> e = <. f , g >. ) |
78 |
75 76 77
|
3netr3d |
|- ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> <. b , c >. =/= <. f , g >. ) |
79 |
|
vex |
|- b e. _V |
80 |
|
vex |
|- c e. _V |
81 |
79 80
|
opth |
|- ( <. b , c >. = <. f , g >. <-> ( b = f /\ c = g ) ) |
82 |
81
|
necon3abii |
|- ( <. b , c >. =/= <. f , g >. <-> -. ( b = f /\ c = g ) ) |
83 |
78 82
|
sylib |
|- ( ( e = <. f , g >. /\ d = <. b , c >. /\ d =/= e ) -> -. ( b = f /\ c = g ) ) |
84 |
72 73 74 83
|
syl3anc |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> -. ( b = f /\ c = g ) ) |
85 |
|
simp1lr |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> a =/= 0 ) |
86 |
|
simp1rr |
|- ( ( ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) |
87 |
86
|
3adant1l |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) |
88 |
|
simp2rr |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) |
89 |
|
simp3r |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) |
90 |
|
simp3 |
|- ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) |
91 |
|
ovex |
|- ( ( 1st ` d ) mod ( abs ` a ) ) e. _V |
92 |
|
ovex |
|- ( ( 2nd ` d ) mod ( abs ` a ) ) e. _V |
93 |
91 92
|
opth |
|- ( <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. <-> ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) |
94 |
90 93
|
sylib |
|- ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) |
95 |
|
simprl |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) ) |
96 |
|
simpll |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> d = <. b , c >. ) |
97 |
96
|
fveq2d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` d ) = ( 1st ` <. b , c >. ) ) |
98 |
79 80
|
op1st |
|- ( 1st ` <. b , c >. ) = b |
99 |
97 98
|
eqtrdi |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` d ) = b ) |
100 |
99
|
oveq1d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` d ) mod ( abs ` a ) ) = ( b mod ( abs ` a ) ) ) |
101 |
|
simplr |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> e = <. f , g >. ) |
102 |
101
|
fveq2d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` e ) = ( 1st ` <. f , g >. ) ) |
103 |
|
vex |
|- f e. _V |
104 |
|
vex |
|- g e. _V |
105 |
103 104
|
op1st |
|- ( 1st ` <. f , g >. ) = f |
106 |
102 105
|
eqtrdi |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 1st ` e ) = f ) |
107 |
106
|
oveq1d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 1st ` e ) mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) |
108 |
95 100 107
|
3eqtr3d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) |
109 |
|
simprr |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) |
110 |
96
|
fveq2d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` d ) = ( 2nd ` <. b , c >. ) ) |
111 |
79 80
|
op2nd |
|- ( 2nd ` <. b , c >. ) = c |
112 |
110 111
|
eqtrdi |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` d ) = c ) |
113 |
112
|
oveq1d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` d ) mod ( abs ` a ) ) = ( c mod ( abs ` a ) ) ) |
114 |
101
|
fveq2d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` e ) = ( 2nd ` <. f , g >. ) ) |
115 |
103 104
|
op2nd |
|- ( 2nd ` <. f , g >. ) = g |
116 |
114 115
|
eqtrdi |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( 2nd ` e ) = g ) |
117 |
116
|
oveq1d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( 2nd ` e ) mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) |
118 |
109 113 117
|
3eqtr3d |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) |
119 |
108 118
|
jca |
|- ( ( ( d = <. b , c >. /\ e = <. f , g >. ) /\ ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) |
120 |
119
|
ex |
|- ( ( d = <. b , c >. /\ e = <. f , g >. ) -> ( ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) ) |
121 |
120
|
3adant3 |
|- ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( ( ( 1st ` d ) mod ( abs ` a ) ) = ( ( 1st ` e ) mod ( abs ` a ) ) /\ ( ( 2nd ` d ) mod ( abs ` a ) ) = ( ( 2nd ` e ) mod ( abs ` a ) ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) ) |
122 |
94 121
|
mpd |
|- ( ( d = <. b , c >. /\ e = <. f , g >. /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) |
123 |
73 72 89 122
|
syl3anc |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) /\ ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) ) |
124 |
123
|
simpld |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( b mod ( abs ` a ) ) = ( f mod ( abs ` a ) ) ) |
125 |
123
|
simprd |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> ( c mod ( abs ` a ) ) = ( g mod ( abs ` a ) ) ) |
126 |
58 61 63 65 67 69 71 84 85 87 88 124 125
|
pellexlem6 |
|- ( ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) /\ ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) /\ ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |
127 |
126
|
3exp |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) |
128 |
127
|
exlimdvv |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( E. f E. g ( e = <. f , g >. /\ ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) |
129 |
55 128
|
syl5bi |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) |
130 |
129
|
ex |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) |
131 |
130
|
exlimdvv |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( E. b E. c ( d = <. b , c >. /\ ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) ) -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) |
132 |
54 131
|
syl5bi |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } -> ( e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) ) |
133 |
132
|
impd |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } /\ e e. { <. f , g >. | ( ( f e. NN /\ g e. NN ) /\ ( ( f ^ 2 ) - ( D x. ( g ^ 2 ) ) ) = a ) } ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) |
134 |
53 133
|
sylan2i |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( ( d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } /\ e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ) -> ( ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) ) |
135 |
134
|
rexlimdvv |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) -> ( E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) ) |
136 |
135
|
imp |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ a =/= 0 ) /\ E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |
137 |
136
|
adantlrr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) /\ E. d e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } E. e e. { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ( d =/= e /\ <. ( ( 1st ` d ) mod ( abs ` a ) ) , ( ( 2nd ` d ) mod ( abs ` a ) ) >. = <. ( ( 1st ` e ) mod ( abs ` a ) ) , ( ( 2nd ` e ) mod ( abs ` a ) ) >. ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |
138 |
41 137
|
mpdan |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. ZZ ) /\ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |
139 |
|
pellexlem5 |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. a e. ZZ ( a =/= 0 /\ { <. b , c >. | ( ( b e. NN /\ c e. NN ) /\ ( ( b ^ 2 ) - ( D x. ( c ^ 2 ) ) ) = a ) } ~~ NN ) ) |
140 |
138 139
|
r19.29a |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. NN E. y e. NN ( ( x ^ 2 ) - ( D x. ( y ^ 2 ) ) ) = 1 ) |