| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. NN )  | 
						
						
							| 2 | 
							
								1
							 | 
							nnred | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. RR )  | 
						
						
							| 3 | 
							
								2
							 | 
							resqcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. RR )  | 
						
						
							| 4 | 
							
								2
							 | 
							sqge0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( B ^ 2 ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							absidd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							eqcomd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) = ( abs ` ( B ^ 2 ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. NN )  | 
						
						
							| 9 | 
							
								8
							 | 
							nncnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. CC )  | 
						
						
							| 10 | 
							
								9
							 | 
							sqcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A ^ 2 ) e. CC )  | 
						
						
							| 11 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN )  | 
						
						
							| 12 | 
							
								11
							 | 
							nncnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. CC )  | 
						
						
							| 13 | 
							
								1
							 | 
							nncnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. CC )  | 
						
						
							| 14 | 
							
								13
							 | 
							sqcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. CC )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							mulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( D x. ( B ^ 2 ) ) e. CC )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							subcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) e. CC )  | 
						
						
							| 17 | 
							
								1
							 | 
							nnne0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B =/= 0 )  | 
						
						
							| 18 | 
							
								
							 | 
							sqne0 | 
							 |-  ( B e. CC -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							biimpar | 
							 |-  ( ( B e. CC /\ B =/= 0 ) -> ( B ^ 2 ) =/= 0 )  | 
						
						
							| 20 | 
							
								13 17 19
							 | 
							syl2anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) =/= 0 )  | 
						
						
							| 21 | 
							
								16 14 20
							 | 
							absdivd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							eqtr4d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) )  | 
						
						
							| 24 | 
							
								16
							 | 
							abscld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. RR )  | 
						
						
							| 25 | 
							
								24
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. CC )  | 
						
						
							| 26 | 
							
								25 14 20
							 | 
							divcan2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) )  | 
						
						
							| 27 | 
							
								10 15 14 20
							 | 
							divsubdird | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) )  | 
						
						
							| 28 | 
							
								9 13 17
							 | 
							sqdivd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A / B ) ^ 2 ) )  | 
						
						
							| 30 | 
							
								11
							 | 
							nnred | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. RR )  | 
						
						
							| 31 | 
							
								11
							 | 
							nnnn0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN0 )  | 
						
						
							| 32 | 
							
								31
							 | 
							nn0ge0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ D )  | 
						
						
							| 33 | 
							
								
							 | 
							remsqsqrt | 
							 |-  ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D )  | 
						
						
							| 34 | 
							
								30 32 33
							 | 
							syl2anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D )  | 
						
						
							| 35 | 
							
								30 32
							 | 
							resqrtcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. RR )  | 
						
						
							| 36 | 
							
								35
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. CC )  | 
						
						
							| 37 | 
							
								36
							 | 
							sqvald | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) ^ 2 ) = ( ( sqrt ` D ) x. ( sqrt ` D ) ) )  | 
						
						
							| 38 | 
							
								12 14 20
							 | 
							divcan4d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = D )  | 
						
						
							| 39 | 
							
								34 37 38
							 | 
							3eqtr4rd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = ( ( sqrt ` D ) ^ 2 ) )  | 
						
						
							| 40 | 
							
								29 39
							 | 
							oveq12d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) = ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) )  | 
						
						
							| 41 | 
							
								9 13 17
							 | 
							divcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. CC )  | 
						
						
							| 42 | 
							
								
							 | 
							subsq | 
							 |-  ( ( ( A / B ) e. CC /\ ( sqrt ` D ) e. CC ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) )  | 
						
						
							| 43 | 
							
								41 36 42
							 | 
							syl2anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) )  | 
						
						
							| 44 | 
							
								41 36
							 | 
							addcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) e. CC )  | 
						
						
							| 45 | 
							
								8
							 | 
							nnred | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. RR )  | 
						
						
							| 46 | 
							
								45 1
							 | 
							nndivred | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. RR )  | 
						
						
							| 47 | 
							
								46 35
							 | 
							resubcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. RR )  | 
						
						
							| 48 | 
							
								47
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. CC )  | 
						
						
							| 49 | 
							
								44 48
							 | 
							mulcomd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 51 | 
							
								27 40 50
							 | 
							3eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							fveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 54 | 
							
								23 26 53
							 | 
							3eqtr3d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 55 | 
							
								48 44
							 | 
							absmuld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 57 | 
							
								48
							 | 
							abscld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 58 | 
							
								44
							 | 
							abscld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 59 | 
							
								57 58
							 | 
							remulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR )  | 
						
						
							| 60 | 
							
								3 59
							 | 
							remulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR )  | 
						
						
							| 61 | 
							
								
							 | 
							2nn0 | 
							 |-  2 e. NN0  | 
						
						
							| 62 | 
							
								61
							 | 
							nn0negzi | 
							 |-  -u 2 e. ZZ  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> -u 2 e. ZZ )  | 
						
						
							| 64 | 
							
								2 17 63
							 | 
							reexpclzd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. RR )  | 
						
						
							| 65 | 
							
								64 58
							 | 
							remulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR )  | 
						
						
							| 66 | 
							
								3 65
							 | 
							remulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR )  | 
						
						
							| 67 | 
							
								
							 | 
							1red | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 e. RR )  | 
						
						
							| 68 | 
							
								
							 | 
							2re | 
							 |-  2 e. RR  | 
						
						
							| 69 | 
							
								68
							 | 
							a1i | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 2 e. RR )  | 
						
						
							| 70 | 
							
								69 35
							 | 
							remulcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. RR )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							readdcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 72 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) )  | 
						
						
							| 73 | 
							
								8
							 | 
							nngt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < A )  | 
						
						
							| 74 | 
							
								1
							 | 
							nngt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < B )  | 
						
						
							| 75 | 
							
								45 2 73 74
							 | 
							divgt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( A / B ) )  | 
						
						
							| 76 | 
							
								11
							 | 
							nngt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < D )  | 
						
						
							| 77 | 
							
								
							 | 
							sqrtgt0 | 
							 |-  ( ( D e. RR /\ 0 < D ) -> 0 < ( sqrt ` D ) )  | 
						
						
							| 78 | 
							
								30 76 77
							 | 
							syl2anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( sqrt ` D ) )  | 
						
						
							| 79 | 
							
								46 35 75 78
							 | 
							addgt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( ( A / B ) + ( sqrt ` D ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							gt0ne0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) =/= 0 )  | 
						
						
							| 81 | 
							
								
							 | 
							absgt0 | 
							 |-  ( ( ( A / B ) + ( sqrt ` D ) ) e. CC -> ( ( ( A / B ) + ( sqrt ` D ) ) =/= 0 <-> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							biimpa | 
							 |-  ( ( ( ( A / B ) + ( sqrt ` D ) ) e. CC /\ ( ( A / B ) + ( sqrt ` D ) ) =/= 0 ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 83 | 
							
								44 80 82
							 | 
							syl2anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							ltmul1 | 
							 |-  ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR /\ ( B ^ -u 2 ) e. RR /\ ( ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR /\ 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 85 | 
							
								57 64 58 83 84
							 | 
							syl112anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 86 | 
							
								72 85
							 | 
							mpbid | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 87 | 
							
								2 17
							 | 
							sqgt0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( B ^ 2 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							ltmul2 | 
							 |-  ( ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) )  | 
						
						
							| 89 | 
							
								59 65 3 87 88
							 | 
							syl112anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) )  | 
						
						
							| 90 | 
							
								86 89
							 | 
							mpbid | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 91 | 
							
								13 17 63
							 | 
							expclzd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. CC )  | 
						
						
							| 92 | 
							
								58
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 93 | 
							
								
							 | 
							mulass | 
							 |-  ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							eqcomd | 
							 |-  ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 95 | 
							
								14 91 92 94
							 | 
							syl3anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 96 | 
							
								
							 | 
							expneg | 
							 |-  ( ( B e. CC /\ 2 e. NN0 ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) )  | 
						
						
							| 97 | 
							
								13 61 96
							 | 
							sylancl | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) )  | 
						
						
							| 99 | 
							
								14 20
							 | 
							recidd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) = 1 )  | 
						
						
							| 100 | 
							
								98 99
							 | 
							eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = 1 )  | 
						
						
							| 101 | 
							
								100
							 | 
							oveq1d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) )  | 
						
						
							| 102 | 
							
								92
							 | 
							mullidd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 103 | 
							
								95 101 102
							 | 
							3eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 104 | 
							
								41 36
							 | 
							addcomd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( A / B ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							ppncan | 
							 |-  ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( sqrt ` D ) + ( A / B ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eqcomd | 
							 |-  ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) )  | 
						
						
							| 107 | 
							
								36 36 41 106
							 | 
							syl3anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) )  | 
						
						
							| 108 | 
							
								36 36
							 | 
							addcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) e. CC )  | 
						
						
							| 109 | 
							
								108 48
							 | 
							addcomd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) )  | 
						
						
							| 110 | 
							
								
							 | 
							2times | 
							 |-  ( ( sqrt ` D ) e. CC -> ( 2 x. ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( sqrt ` D ) ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							eqcomd | 
							 |-  ( ( sqrt ` D ) e. CC -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) )  | 
						
						
							| 112 | 
							
								36 111
							 | 
							syl | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 114 | 
							
								109 113
							 | 
							eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 115 | 
							
								104 107 114
							 | 
							3eqtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							fveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 117 | 
							
								47 70
							 | 
							readdcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 118 | 
							
								117
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. CC )  | 
						
						
							| 119 | 
							
								118
							 | 
							abscld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) e. RR )  | 
						
						
							| 120 | 
							
								70
							 | 
							recnd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. CC )  | 
						
						
							| 121 | 
							
								120
							 | 
							abscld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) e. RR )  | 
						
						
							| 122 | 
							
								57 121
							 | 
							readdcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) e. RR )  | 
						
						
							| 123 | 
							
								48 120
							 | 
							abstrid | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) )  | 
						
						
							| 124 | 
							
								
							 | 
							0le2 | 
							 |-  0 <_ 2  | 
						
						
							| 125 | 
							
								124
							 | 
							a1i | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ 2 )  | 
						
						
							| 126 | 
							
								30 32
							 | 
							sqrtge0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( sqrt ` D ) )  | 
						
						
							| 127 | 
							
								69 35 125 126
							 | 
							mulge0d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( 2 x. ( sqrt ` D ) ) )  | 
						
						
							| 128 | 
							
								70 127
							 | 
							absidd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) = ( 2 x. ( sqrt ` D ) ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							oveq2d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 130 | 
							
								1
							 | 
							nnsqcld | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. NN )  | 
						
						
							| 131 | 
							
								130
							 | 
							nnge1d | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 <_ ( B ^ 2 ) )  | 
						
						
							| 132 | 
							
								
							 | 
							0lt1 | 
							 |-  0 < 1  | 
						
						
							| 133 | 
							
								132
							 | 
							a1i | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < 1 )  | 
						
						
							| 134 | 
							
								
							 | 
							lerec | 
							 |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) )  | 
						
						
							| 135 | 
							
								67 133 3 87 134
							 | 
							syl22anc | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) )  | 
						
						
							| 136 | 
							
								131 135
							 | 
							mpbid | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) )  | 
						
						
							| 137 | 
							
								
							 | 
							1div1e1 | 
							 |-  ( 1 / 1 ) = 1  | 
						
						
							| 138 | 
							
								136 137
							 | 
							breqtrdi | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ 1 )  | 
						
						
							| 139 | 
							
								97 138
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) <_ 1 )  | 
						
						
							| 140 | 
							
								57 64 67 72 139
							 | 
							ltletrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < 1 )  | 
						
						
							| 141 | 
							
								57 67 140
							 | 
							ltled | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) <_ 1 )  | 
						
						
							| 142 | 
							
								57 67 70 141
							 | 
							leadd1dd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 143 | 
							
								129 142
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 144 | 
							
								119 122 71 123 143
							 | 
							letrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 145 | 
							
								116 144
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 146 | 
							
								103 145
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 147 | 
							
								60 66 71 90 146
							 | 
							ltletrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 148 | 
							
								56 147
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  | 
						
						
							| 149 | 
							
								54 148
							 | 
							eqbrtrd | 
							 |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) )  |