Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
|- NN e. _V |
2 |
1 1
|
xpex |
|- ( NN X. NN ) e. _V |
3 |
|
opabssxp |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } C_ ( NN X. NN ) |
4 |
2 3
|
ssexi |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } e. _V |
5 |
|
simprl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> a e. QQ ) |
6 |
|
simprrl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> 0 < a ) |
7 |
|
qgt0numnn |
|- ( ( a e. QQ /\ 0 < a ) -> ( numer ` a ) e. NN ) |
8 |
5 6 7
|
syl2anc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( numer ` a ) e. NN ) |
9 |
|
qdencl |
|- ( a e. QQ -> ( denom ` a ) e. NN ) |
10 |
5 9
|
syl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( denom ` a ) e. NN ) |
11 |
8 10
|
jca |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) ) |
12 |
|
simpll |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> D e. NN ) |
13 |
|
simplr |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> -. ( sqrt ` D ) e. QQ ) |
14 |
|
pellexlem1 |
|- ( ( ( D e. NN /\ ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ -. ( sqrt ` D ) e. QQ ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) |
15 |
12 8 10 13 14
|
syl31anc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) |
16 |
|
simprrr |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) |
17 |
|
qeqnumdivden |
|- ( a e. QQ -> a = ( ( numer ` a ) / ( denom ` a ) ) ) |
18 |
17
|
oveq1d |
|- ( a e. QQ -> ( a - ( sqrt ` D ) ) = ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) |
19 |
18
|
fveq2d |
|- ( a e. QQ -> ( abs ` ( a - ( sqrt ` D ) ) ) = ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) ) |
20 |
19
|
breq1d |
|- ( a e. QQ -> ( ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) <-> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
21 |
5 20
|
syl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) <-> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
22 |
16 21
|
mpbid |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) |
23 |
|
pellexlem2 |
|- ( ( ( D e. NN /\ ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
24 |
12 8 10 22 23
|
syl31anc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
25 |
11 15 24
|
jca32 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
26 |
25
|
ex |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
27 |
|
breq2 |
|- ( x = a -> ( 0 < x <-> 0 < a ) ) |
28 |
|
fvoveq1 |
|- ( x = a -> ( abs ` ( x - ( sqrt ` D ) ) ) = ( abs ` ( a - ( sqrt ` D ) ) ) ) |
29 |
|
fveq2 |
|- ( x = a -> ( denom ` x ) = ( denom ` a ) ) |
30 |
29
|
oveq1d |
|- ( x = a -> ( ( denom ` x ) ^ -u 2 ) = ( ( denom ` a ) ^ -u 2 ) ) |
31 |
28 30
|
breq12d |
|- ( x = a -> ( ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) <-> ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) |
32 |
27 31
|
anbi12d |
|- ( x = a -> ( ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) <-> ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) |
33 |
32
|
elrab |
|- ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } <-> ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) |
34 |
|
fvex |
|- ( numer ` a ) e. _V |
35 |
|
fvex |
|- ( denom ` a ) e. _V |
36 |
|
eleq1 |
|- ( y = ( numer ` a ) -> ( y e. NN <-> ( numer ` a ) e. NN ) ) |
37 |
36
|
anbi1d |
|- ( y = ( numer ` a ) -> ( ( y e. NN /\ z e. NN ) <-> ( ( numer ` a ) e. NN /\ z e. NN ) ) ) |
38 |
|
oveq1 |
|- ( y = ( numer ` a ) -> ( y ^ 2 ) = ( ( numer ` a ) ^ 2 ) ) |
39 |
38
|
oveq1d |
|- ( y = ( numer ` a ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) |
40 |
39
|
neeq1d |
|- ( y = ( numer ` a ) -> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 <-> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) ) |
41 |
39
|
fveq2d |
|- ( y = ( numer ` a ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) = ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) ) |
42 |
41
|
breq1d |
|- ( y = ( numer ` a ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) <-> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) |
43 |
40 42
|
anbi12d |
|- ( y = ( numer ` a ) -> ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
44 |
37 43
|
anbi12d |
|- ( y = ( numer ` a ) -> ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( ( ( numer ` a ) e. NN /\ z e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
45 |
|
eleq1 |
|- ( z = ( denom ` a ) -> ( z e. NN <-> ( denom ` a ) e. NN ) ) |
46 |
45
|
anbi2d |
|- ( z = ( denom ` a ) -> ( ( ( numer ` a ) e. NN /\ z e. NN ) <-> ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) ) ) |
47 |
|
oveq1 |
|- ( z = ( denom ` a ) -> ( z ^ 2 ) = ( ( denom ` a ) ^ 2 ) ) |
48 |
47
|
oveq2d |
|- ( z = ( denom ` a ) -> ( D x. ( z ^ 2 ) ) = ( D x. ( ( denom ` a ) ^ 2 ) ) ) |
49 |
48
|
oveq2d |
|- ( z = ( denom ` a ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) |
50 |
49
|
neeq1d |
|- ( z = ( denom ` a ) -> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 <-> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) ) |
51 |
49
|
fveq2d |
|- ( z = ( denom ` a ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) = ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) ) |
52 |
51
|
breq1d |
|- ( z = ( denom ` a ) -> ( ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) <-> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) |
53 |
50 52
|
anbi12d |
|- ( z = ( denom ` a ) -> ( ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
54 |
46 53
|
anbi12d |
|- ( z = ( denom ` a ) -> ( ( ( ( numer ` a ) e. NN /\ z e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
55 |
34 35 44 54
|
opelopab |
|- ( <. ( numer ` a ) , ( denom ` a ) >. e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
56 |
26 33 55
|
3imtr4g |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } -> <. ( numer ` a ) , ( denom ` a ) >. e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) ) |
57 |
|
ssrab2 |
|- { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } C_ QQ |
58 |
|
simprl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) |
59 |
57 58
|
sselid |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> a e. QQ ) |
60 |
|
simprr |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) |
61 |
57 60
|
sselid |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> b e. QQ ) |
62 |
34 35
|
opth |
|- ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) |
63 |
|
simprl |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( numer ` a ) = ( numer ` b ) ) |
64 |
|
simprr |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( denom ` a ) = ( denom ` b ) ) |
65 |
63 64
|
oveq12d |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( ( numer ` a ) / ( denom ` a ) ) = ( ( numer ` b ) / ( denom ` b ) ) ) |
66 |
|
simpll |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a e. QQ ) |
67 |
66 17
|
syl |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a = ( ( numer ` a ) / ( denom ` a ) ) ) |
68 |
|
simplr |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> b e. QQ ) |
69 |
|
qeqnumdivden |
|- ( b e. QQ -> b = ( ( numer ` b ) / ( denom ` b ) ) ) |
70 |
68 69
|
syl |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> b = ( ( numer ` b ) / ( denom ` b ) ) ) |
71 |
65 67 70
|
3eqtr4d |
|- ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a = b ) |
72 |
71
|
ex |
|- ( ( a e. QQ /\ b e. QQ ) -> ( ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) -> a = b ) ) |
73 |
62 72
|
syl5bi |
|- ( ( a e. QQ /\ b e. QQ ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. -> a = b ) ) |
74 |
|
fveq2 |
|- ( a = b -> ( numer ` a ) = ( numer ` b ) ) |
75 |
|
fveq2 |
|- ( a = b -> ( denom ` a ) = ( denom ` b ) ) |
76 |
74 75
|
opeq12d |
|- ( a = b -> <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. ) |
77 |
73 76
|
impbid1 |
|- ( ( a e. QQ /\ b e. QQ ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) |
78 |
59 61 77
|
syl2anc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) |
79 |
78
|
ex |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) ) |
80 |
56 79
|
dom2d |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } e. _V -> { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) ) |
81 |
4 80
|
mpi |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) |