| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pellexlem4 |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ~~ NN ) |
| 2 |
|
fzfi |
|- ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) e. Fin |
| 3 |
|
diffi |
|- ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) e. Fin -> ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) e. Fin ) |
| 4 |
2 3
|
mp1i |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) e. Fin ) |
| 5 |
|
elopab |
|- ( a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> E. y E. z ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
| 6 |
|
fveq2 |
|- ( a = <. y , z >. -> ( 1st ` a ) = ( 1st ` <. y , z >. ) ) |
| 7 |
6
|
oveq1d |
|- ( a = <. y , z >. -> ( ( 1st ` a ) ^ 2 ) = ( ( 1st ` <. y , z >. ) ^ 2 ) ) |
| 8 |
|
fveq2 |
|- ( a = <. y , z >. -> ( 2nd ` a ) = ( 2nd ` <. y , z >. ) ) |
| 9 |
8
|
oveq1d |
|- ( a = <. y , z >. -> ( ( 2nd ` a ) ^ 2 ) = ( ( 2nd ` <. y , z >. ) ^ 2 ) ) |
| 10 |
9
|
oveq2d |
|- ( a = <. y , z >. -> ( D x. ( ( 2nd ` a ) ^ 2 ) ) = ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) |
| 11 |
7 10
|
oveq12d |
|- ( a = <. y , z >. -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) ) |
| 12 |
|
vex |
|- y e. _V |
| 13 |
|
vex |
|- z e. _V |
| 14 |
12 13
|
op1st |
|- ( 1st ` <. y , z >. ) = y |
| 15 |
14
|
oveq1i |
|- ( ( 1st ` <. y , z >. ) ^ 2 ) = ( y ^ 2 ) |
| 16 |
12 13
|
op2nd |
|- ( 2nd ` <. y , z >. ) = z |
| 17 |
16
|
oveq1i |
|- ( ( 2nd ` <. y , z >. ) ^ 2 ) = ( z ^ 2 ) |
| 18 |
17
|
oveq2i |
|- ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) = ( D x. ( z ^ 2 ) ) |
| 19 |
15 18
|
oveq12i |
|- ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) |
| 20 |
11 19
|
eqtrdi |
|- ( a = <. y , z >. -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) |
| 21 |
20
|
ad2antrl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) |
| 22 |
|
simprrl |
|- ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( y e. NN /\ z e. NN ) ) |
| 23 |
|
simpl |
|- ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> D e. NN ) |
| 24 |
|
simprr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 25 |
24
|
ad2antll |
|- ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 26 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 27 |
26
|
ad2antrr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> y e. ZZ ) |
| 28 |
|
zsqcl |
|- ( y e. ZZ -> ( y ^ 2 ) e. ZZ ) |
| 29 |
27 28
|
syl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( y ^ 2 ) e. ZZ ) |
| 30 |
|
nnz |
|- ( D e. NN -> D e. ZZ ) |
| 31 |
30
|
ad2antrl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. ZZ ) |
| 32 |
|
simplr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> z e. NN ) |
| 33 |
32
|
nnzd |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> z e. ZZ ) |
| 34 |
|
zsqcl |
|- ( z e. ZZ -> ( z ^ 2 ) e. ZZ ) |
| 35 |
33 34
|
syl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( z ^ 2 ) e. ZZ ) |
| 36 |
31 35
|
zmulcld |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( D x. ( z ^ 2 ) ) e. ZZ ) |
| 37 |
29 36
|
zsubcld |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ ) |
| 38 |
|
1re |
|- 1 e. RR |
| 39 |
|
2re |
|- 2 e. RR |
| 40 |
|
nnre |
|- ( D e. NN -> D e. RR ) |
| 41 |
40
|
ad2antrl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. RR ) |
| 42 |
|
nnnn0 |
|- ( D e. NN -> D e. NN0 ) |
| 43 |
42
|
ad2antrl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> D e. NN0 ) |
| 44 |
43
|
nn0ge0d |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> 0 <_ D ) |
| 45 |
41 44
|
resqrtcld |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( sqrt ` D ) e. RR ) |
| 46 |
|
remulcl |
|- ( ( 2 e. RR /\ ( sqrt ` D ) e. RR ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) |
| 47 |
39 45 46
|
sylancr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) |
| 48 |
|
readdcl |
|- ( ( 1 e. RR /\ ( 2 x. ( sqrt ` D ) ) e. RR ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) |
| 49 |
38 47 48
|
sylancr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) |
| 50 |
49
|
flcld |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) |
| 51 |
50
|
znegcld |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) |
| 52 |
37
|
zred |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR ) |
| 53 |
50
|
zred |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) |
| 54 |
|
nn0abscl |
|- ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. NN0 ) |
| 55 |
37 54
|
syl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. NN0 ) |
| 56 |
55
|
nn0zd |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. ZZ ) |
| 57 |
56
|
zred |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. RR ) |
| 58 |
|
peano2re |
|- ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR -> ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) e. RR ) |
| 59 |
53 58
|
syl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) e. RR ) |
| 60 |
|
simprr |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 61 |
|
flltp1 |
|- ( ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) |
| 62 |
49 61
|
syl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) |
| 63 |
57 49 59 60 62
|
lttrd |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) |
| 64 |
|
zleltp1 |
|- ( ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) ) |
| 65 |
56 50 64
|
syl2anc |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) + 1 ) ) ) |
| 66 |
63 65
|
mpbird |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) |
| 67 |
|
absle |
|- ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
| 68 |
67
|
biimpa |
|- ( ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. RR /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 69 |
52 53 66 68
|
syl21anc |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 70 |
|
elfz |
|- ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ /\ -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) -> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
| 71 |
70
|
biimpar |
|- ( ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ZZ /\ -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ /\ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) e. ZZ ) /\ ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) <_ ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 72 |
37 51 50 69 71
|
syl31anc |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( D e. NN /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 73 |
22 23 25 72
|
syl12anc |
|- ( ( D e. NN /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 74 |
73
|
adantlr |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) |
| 75 |
|
simprl |
|- ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) |
| 76 |
75
|
ad2antll |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) |
| 77 |
|
eldifsn |
|- ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) <-> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) ) |
| 78 |
74 76 77
|
sylanbrc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) |
| 79 |
21 78
|
eqeltrd |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) |
| 80 |
79
|
ex |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) |
| 81 |
80
|
exlimdvv |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( E. y E. z ( a = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) |
| 82 |
5 81
|
biimtrid |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) ) |
| 83 |
82
|
imp |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) ) |
| 84 |
1 4 83
|
fiphp3d |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) |
| 85 |
|
eldif |
|- ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) <-> ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ -. x e. { 0 } ) ) |
| 86 |
|
elfzelz |
|- ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> x e. ZZ ) |
| 87 |
|
simp2 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> x e. ZZ ) |
| 88 |
|
velsn |
|- ( x e. { 0 } <-> x = 0 ) |
| 89 |
88
|
biimpri |
|- ( x = 0 -> x e. { 0 } ) |
| 90 |
89
|
necon3bi |
|- ( -. x e. { 0 } -> x =/= 0 ) |
| 91 |
90
|
3ad2ant3 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> x =/= 0 ) |
| 92 |
87 91
|
jca |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ x e. ZZ /\ -. x e. { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) |
| 93 |
92
|
3exp |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ZZ -> ( -. x e. { 0 } -> ( x e. ZZ /\ x =/= 0 ) ) ) ) |
| 94 |
86 93
|
syl5 |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) -> ( -. x e. { 0 } -> ( x e. ZZ /\ x =/= 0 ) ) ) ) |
| 95 |
94
|
impd |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) /\ -. x e. { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) ) |
| 96 |
85 95
|
biimtrid |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) -> ( x e. ZZ /\ x =/= 0 ) ) ) |
| 97 |
|
simp2l |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> x e. ZZ ) |
| 98 |
|
simp2r |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> x =/= 0 ) |
| 99 |
|
nnex |
|- NN e. _V |
| 100 |
99 99
|
xpex |
|- ( NN X. NN ) e. _V |
| 101 |
|
opabssxp |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } C_ ( NN X. NN ) |
| 102 |
|
ssdomg |
|- ( ( NN X. NN ) e. _V -> ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } C_ ( NN X. NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) ) ) |
| 103 |
100 101 102
|
mp2 |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) |
| 104 |
|
xpnnen |
|- ( NN X. NN ) ~~ NN |
| 105 |
|
domentr |
|- ( ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ ( NN X. NN ) /\ ( NN X. NN ) ~~ NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN ) |
| 106 |
103 104 105
|
mp2an |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN |
| 107 |
|
ensym |
|- ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ) |
| 108 |
107
|
3ad2ant3 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ) |
| 109 |
100 101
|
ssexi |
|- { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } e. _V |
| 110 |
|
fveq2 |
|- ( a = b -> ( 1st ` a ) = ( 1st ` b ) ) |
| 111 |
110
|
oveq1d |
|- ( a = b -> ( ( 1st ` a ) ^ 2 ) = ( ( 1st ` b ) ^ 2 ) ) |
| 112 |
|
fveq2 |
|- ( a = b -> ( 2nd ` a ) = ( 2nd ` b ) ) |
| 113 |
112
|
oveq1d |
|- ( a = b -> ( ( 2nd ` a ) ^ 2 ) = ( ( 2nd ` b ) ^ 2 ) ) |
| 114 |
113
|
oveq2d |
|- ( a = b -> ( D x. ( ( 2nd ` a ) ^ 2 ) ) = ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) |
| 115 |
111 114
|
oveq12d |
|- ( a = b -> ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) |
| 116 |
115
|
eqeq1d |
|- ( a = b -> ( ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x <-> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) ) |
| 117 |
116
|
elrab |
|- ( b e. { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } <-> ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) ) |
| 118 |
|
simprl |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> b = <. y , z >. ) |
| 119 |
|
simprrl |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( y e. NN /\ z e. NN ) ) |
| 120 |
|
fveq2 |
|- ( b = <. y , z >. -> ( 1st ` b ) = ( 1st ` <. y , z >. ) ) |
| 121 |
120
|
oveq1d |
|- ( b = <. y , z >. -> ( ( 1st ` b ) ^ 2 ) = ( ( 1st ` <. y , z >. ) ^ 2 ) ) |
| 122 |
|
fveq2 |
|- ( b = <. y , z >. -> ( 2nd ` b ) = ( 2nd ` <. y , z >. ) ) |
| 123 |
122
|
oveq1d |
|- ( b = <. y , z >. -> ( ( 2nd ` b ) ^ 2 ) = ( ( 2nd ` <. y , z >. ) ^ 2 ) ) |
| 124 |
123
|
oveq2d |
|- ( b = <. y , z >. -> ( D x. ( ( 2nd ` b ) ^ 2 ) ) = ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) |
| 125 |
121 124
|
oveq12d |
|- ( b = <. y , z >. -> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = ( ( ( 1st ` <. y , z >. ) ^ 2 ) - ( D x. ( ( 2nd ` <. y , z >. ) ^ 2 ) ) ) ) |
| 126 |
125 19
|
eqtr2di |
|- ( b = <. y , z >. -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) |
| 127 |
126
|
ad2antrl |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) ) |
| 128 |
|
simplr |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) |
| 129 |
127 128
|
eqtrd |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) |
| 130 |
118 119 129
|
jca32 |
|- ( ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) /\ ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) -> ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) |
| 131 |
130
|
ex |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) ) |
| 132 |
131
|
2eximdv |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) -> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) ) |
| 133 |
|
elopab |
|- ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) |
| 134 |
|
elopab |
|- ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } <-> E. y E. z ( b = <. y , z >. /\ ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) ) ) |
| 135 |
132 133 134
|
3imtr4g |
|- ( ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) |
| 136 |
135
|
expimpd |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( ( ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x /\ b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) |
| 137 |
136
|
ancomsd |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( ( b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } /\ ( ( ( 1st ` b ) ^ 2 ) - ( D x. ( ( 2nd ` b ) ^ 2 ) ) ) = x ) -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) |
| 138 |
117 137
|
biimtrid |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( b e. { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } -> b e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) |
| 139 |
138
|
ssrdv |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) |
| 140 |
139
|
3adant3 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) |
| 141 |
|
ssdomg |
|- ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } e. _V -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } C_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) ) |
| 142 |
109 140 141
|
mpsyl |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) |
| 143 |
|
endomtr |
|- ( ( NN ~~ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) -> NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) |
| 144 |
108 142 143
|
syl2anc |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) |
| 145 |
|
sbth |
|- ( ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~<_ NN /\ NN ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) |
| 146 |
106 144 145
|
sylancr |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) |
| 147 |
97 98 146
|
jca32 |
|- ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( x e. ZZ /\ x =/= 0 ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) |
| 148 |
147
|
3exp |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ZZ /\ x =/= 0 ) -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) ) |
| 149 |
96 148
|
syld |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) -> ( { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) ) |
| 150 |
149
|
impd |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) /\ { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN ) -> ( x e. ZZ /\ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) ) |
| 151 |
150
|
reximdv2 |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( E. x e. ( ( -u ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ... ( |_ ` ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) \ { 0 } ) { a e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } | ( ( ( 1st ` a ) ^ 2 ) - ( D x. ( ( 2nd ` a ) ^ 2 ) ) ) = x } ~~ NN -> E. x e. ZZ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) ) |
| 152 |
84 151
|
mpd |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. x e. ZZ ( x =/= 0 /\ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = x ) } ~~ NN ) ) |