Step |
Hyp |
Ref |
Expression |
1 |
|
pellfund14 |
|- ( ( D e. ( NN \ []NN ) /\ A e. ( Pell14QR ` D ) ) -> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) |
2 |
|
simpll |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> D e. ( NN \ []NN ) ) |
3 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
4 |
|
pellfundex |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell1QR ` D ) ) |
5 |
3 4
|
sseldd |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
6 |
5
|
ad2antrr |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( PellFund ` D ) e. ( Pell14QR ` D ) ) |
7 |
|
simplr |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> x e. ZZ ) |
8 |
|
pell14qrexpcl |
|- ( ( D e. ( NN \ []NN ) /\ ( PellFund ` D ) e. ( Pell14QR ` D ) /\ x e. ZZ ) -> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) |
9 |
2 6 7 8
|
syl3anc |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) |
10 |
|
eleq1 |
|- ( A = ( ( PellFund ` D ) ^ x ) -> ( A e. ( Pell14QR ` D ) <-> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) ) |
11 |
10
|
adantl |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> ( A e. ( Pell14QR ` D ) <-> ( ( PellFund ` D ) ^ x ) e. ( Pell14QR ` D ) ) ) |
12 |
9 11
|
mpbird |
|- ( ( ( D e. ( NN \ []NN ) /\ x e. ZZ ) /\ A = ( ( PellFund ` D ) ^ x ) ) -> A e. ( Pell14QR ` D ) ) |
13 |
12
|
r19.29an |
|- ( ( D e. ( NN \ []NN ) /\ E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) -> A e. ( Pell14QR ` D ) ) |
14 |
1 13
|
impbida |
|- ( D e. ( NN \ []NN ) -> ( A e. ( Pell14QR ` D ) <-> E. x e. ZZ A = ( ( PellFund ` D ) ^ x ) ) ) |