| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssrab2 |
|- { a e. ( Pell14QR ` D ) | 1 < a } C_ ( Pell14QR ` D ) |
| 2 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) ) -> a e. RR ) |
| 3 |
2
|
ex |
|- ( D e. ( NN \ []NN ) -> ( a e. ( Pell14QR ` D ) -> a e. RR ) ) |
| 4 |
3
|
ssrdv |
|- ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ RR ) |
| 5 |
1 4
|
sstrid |
|- ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) |
| 6 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
| 7 |
|
pellqrex |
|- ( D e. ( NN \ []NN ) -> E. a e. ( Pell1QR ` D ) 1 < a ) |
| 8 |
|
ssrexv |
|- ( ( Pell1QR ` D ) C_ ( Pell14QR ` D ) -> ( E. a e. ( Pell1QR ` D ) 1 < a -> E. a e. ( Pell14QR ` D ) 1 < a ) ) |
| 9 |
6 7 8
|
sylc |
|- ( D e. ( NN \ []NN ) -> E. a e. ( Pell14QR ` D ) 1 < a ) |
| 10 |
|
rabn0 |
|- ( { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) <-> E. a e. ( Pell14QR ` D ) 1 < a ) |
| 11 |
9 10
|
sylibr |
|- ( D e. ( NN \ []NN ) -> { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) ) |
| 12 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 13 |
12
|
peano2nnd |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN ) |
| 14 |
13
|
nnrpd |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR+ ) |
| 15 |
14
|
rpsqrtcld |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) |
| 16 |
15
|
rpred |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR ) |
| 17 |
12
|
nnrpd |
|- ( D e. ( NN \ []NN ) -> D e. RR+ ) |
| 18 |
17
|
rpsqrtcld |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR+ ) |
| 19 |
18
|
rpred |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR ) |
| 20 |
16 19
|
readdcld |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) |
| 21 |
|
breq2 |
|- ( a = b -> ( 1 < a <-> 1 < b ) ) |
| 22 |
21
|
elrab |
|- ( b e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( b e. ( Pell14QR ` D ) /\ 1 < b ) ) |
| 23 |
|
pell14qrgap |
|- ( ( D e. ( NN \ []NN ) /\ b e. ( Pell14QR ` D ) /\ 1 < b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) |
| 24 |
23
|
3expib |
|- ( D e. ( NN \ []NN ) -> ( ( b e. ( Pell14QR ` D ) /\ 1 < b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) ) |
| 25 |
22 24
|
biimtrid |
|- ( D e. ( NN \ []NN ) -> ( b e. { a e. ( Pell14QR ` D ) | 1 < a } -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) ) |
| 26 |
25
|
ralrimiv |
|- ( D e. ( NN \ []NN ) -> A. b e. { a e. ( Pell14QR ` D ) | 1 < a } ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) |
| 27 |
|
infmrgelbi |
|- ( ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) /\ ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) /\ A. b e. { a e. ( Pell14QR ` D ) | 1 < a } ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ b ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
| 28 |
5 11 20 26 27
|
syl31anc |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
| 29 |
|
pellfundval |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
| 30 |
28 29
|
breqtrrd |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( PellFund ` D ) ) |