Step |
Hyp |
Ref |
Expression |
1 |
|
pellfundval |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
2 |
1
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( PellFund ` D ) = inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
3 |
|
simp3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( PellFund ` D ) < A ) |
4 |
2 3
|
eqbrtrrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) < A ) |
5 |
|
pellfundre |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) |
6 |
5
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( PellFund ` D ) e. RR ) |
7 |
2 6
|
eqeltrrd |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) e. RR ) |
8 |
|
simp2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> A e. RR ) |
9 |
7 8
|
ltnled |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) < A <-> -. A <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) ) |
10 |
4 9
|
mpbid |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> -. A <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
11 |
|
ssrab2 |
|- { a e. ( Pell14QR ` D ) | 1 < a } C_ ( Pell14QR ` D ) |
12 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ a e. ( Pell14QR ` D ) ) -> a e. RR ) |
13 |
12
|
ex |
|- ( D e. ( NN \ []NN ) -> ( a e. ( Pell14QR ` D ) -> a e. RR ) ) |
14 |
13
|
ssrdv |
|- ( D e. ( NN \ []NN ) -> ( Pell14QR ` D ) C_ RR ) |
15 |
14
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( Pell14QR ` D ) C_ RR ) |
16 |
11 15
|
sstrid |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> { a e. ( Pell14QR ` D ) | 1 < a } C_ RR ) |
17 |
|
pell1qrss14 |
|- ( D e. ( NN \ []NN ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
18 |
17
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( Pell1QR ` D ) C_ ( Pell14QR ` D ) ) |
19 |
|
pellqrex |
|- ( D e. ( NN \ []NN ) -> E. a e. ( Pell1QR ` D ) 1 < a ) |
20 |
19
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> E. a e. ( Pell1QR ` D ) 1 < a ) |
21 |
|
ssrexv |
|- ( ( Pell1QR ` D ) C_ ( Pell14QR ` D ) -> ( E. a e. ( Pell1QR ` D ) 1 < a -> E. a e. ( Pell14QR ` D ) 1 < a ) ) |
22 |
18 20 21
|
sylc |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> E. a e. ( Pell14QR ` D ) 1 < a ) |
23 |
|
rabn0 |
|- ( { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) <-> E. a e. ( Pell14QR ` D ) 1 < a ) |
24 |
22 23
|
sylibr |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) ) |
25 |
|
infmrgelbi |
|- ( ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) /\ A e. RR ) /\ A. x e. { a e. ( Pell14QR ` D ) | 1 < a } A <_ x ) -> A <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) |
26 |
25
|
ex |
|- ( ( { a e. ( Pell14QR ` D ) | 1 < a } C_ RR /\ { a e. ( Pell14QR ` D ) | 1 < a } =/= (/) /\ A e. RR ) -> ( A. x e. { a e. ( Pell14QR ` D ) | 1 < a } A <_ x -> A <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) ) |
27 |
16 24 8 26
|
syl3anc |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( A. x e. { a e. ( Pell14QR ` D ) | 1 < a } A <_ x -> A <_ inf ( { a e. ( Pell14QR ` D ) | 1 < a } , RR , < ) ) ) |
28 |
10 27
|
mtod |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> -. A. x e. { a e. ( Pell14QR ` D ) | 1 < a } A <_ x ) |
29 |
|
rexnal |
|- ( E. x e. { a e. ( Pell14QR ` D ) | 1 < a } -. A <_ x <-> -. A. x e. { a e. ( Pell14QR ` D ) | 1 < a } A <_ x ) |
30 |
28 29
|
sylibr |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> E. x e. { a e. ( Pell14QR ` D ) | 1 < a } -. A <_ x ) |
31 |
|
breq2 |
|- ( a = x -> ( 1 < a <-> 1 < x ) ) |
32 |
31
|
elrab |
|- ( x e. { a e. ( Pell14QR ` D ) | 1 < a } <-> ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) |
33 |
|
simprl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> x e. ( Pell14QR ` D ) ) |
34 |
|
1red |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> 1 e. RR ) |
35 |
|
simpl1 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> D e. ( NN \ []NN ) ) |
36 |
|
pell14qrre |
|- ( ( D e. ( NN \ []NN ) /\ x e. ( Pell14QR ` D ) ) -> x e. RR ) |
37 |
35 33 36
|
syl2anc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> x e. RR ) |
38 |
|
simprr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> 1 < x ) |
39 |
34 37 38
|
ltled |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> 1 <_ x ) |
40 |
33 39
|
jca |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> ( x e. ( Pell14QR ` D ) /\ 1 <_ x ) ) |
41 |
|
elpell1qr2 |
|- ( D e. ( NN \ []NN ) -> ( x e. ( Pell1QR ` D ) <-> ( x e. ( Pell14QR ` D ) /\ 1 <_ x ) ) ) |
42 |
35 41
|
syl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> ( x e. ( Pell1QR ` D ) <-> ( x e. ( Pell14QR ` D ) /\ 1 <_ x ) ) ) |
43 |
40 42
|
mpbird |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. ( Pell14QR ` D ) /\ 1 < x ) ) -> x e. ( Pell1QR ` D ) ) |
44 |
32 43
|
sylan2b |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ x e. { a e. ( Pell14QR ` D ) | 1 < a } ) -> x e. ( Pell1QR ` D ) ) |
45 |
44
|
adantrr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> x e. ( Pell1QR ` D ) ) |
46 |
|
simpl1 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> D e. ( NN \ []NN ) ) |
47 |
|
simprl |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> x e. { a e. ( Pell14QR ` D ) | 1 < a } ) |
48 |
11 47
|
sselid |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> x e. ( Pell14QR ` D ) ) |
49 |
|
simpr |
|- ( ( x e. ( Pell14QR ` D ) /\ 1 < x ) -> 1 < x ) |
50 |
49
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( ( x e. ( Pell14QR ` D ) /\ 1 < x ) -> 1 < x ) ) |
51 |
32 50
|
syl5bi |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> ( x e. { a e. ( Pell14QR ` D ) | 1 < a } -> 1 < x ) ) |
52 |
51
|
imp |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ x e. { a e. ( Pell14QR ` D ) | 1 < a } ) -> 1 < x ) |
53 |
52
|
adantrr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> 1 < x ) |
54 |
|
pellfundlb |
|- ( ( D e. ( NN \ []NN ) /\ x e. ( Pell14QR ` D ) /\ 1 < x ) -> ( PellFund ` D ) <_ x ) |
55 |
46 48 53 54
|
syl3anc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> ( PellFund ` D ) <_ x ) |
56 |
|
simprr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> -. A <_ x ) |
57 |
15
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> ( Pell14QR ` D ) C_ RR ) |
58 |
57 48
|
sseldd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> x e. RR ) |
59 |
|
simpl2 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> A e. RR ) |
60 |
58 59
|
ltnled |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> ( x < A <-> -. A <_ x ) ) |
61 |
56 60
|
mpbird |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> x < A ) |
62 |
55 61
|
jca |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) /\ ( x e. { a e. ( Pell14QR ` D ) | 1 < a } /\ -. A <_ x ) ) -> ( ( PellFund ` D ) <_ x /\ x < A ) ) |
63 |
30 45 62
|
reximssdv |
|- ( ( D e. ( NN \ []NN ) /\ A e. RR /\ ( PellFund ` D ) < A ) -> E. x e. ( Pell1QR ` D ) ( ( PellFund ` D ) <_ x /\ x < A ) ) |