Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( D e. ( NN \ []NN ) -> 1 e. RR ) |
2 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
3 |
2
|
peano2nnd |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN ) |
4 |
3
|
nnrpd |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR+ ) |
5 |
4
|
rpsqrtcld |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR+ ) |
6 |
5
|
rpred |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` ( D + 1 ) ) e. RR ) |
7 |
2
|
nnrpd |
|- ( D e. ( NN \ []NN ) -> D e. RR+ ) |
8 |
7
|
rpsqrtcld |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR+ ) |
9 |
8
|
rpred |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` D ) e. RR ) |
10 |
6 9
|
readdcld |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) e. RR ) |
11 |
|
pellfundre |
|- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) |
12 |
|
sqrt1 |
|- ( sqrt ` 1 ) = 1 |
13 |
12 1
|
eqeltrid |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) e. RR ) |
14 |
13 13
|
readdcld |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) e. RR ) |
15 |
|
1lt2 |
|- 1 < 2 |
16 |
12 12
|
oveq12i |
|- ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) = ( 1 + 1 ) |
17 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
18 |
16 17
|
eqtri |
|- ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) = 2 |
19 |
15 18
|
breqtrri |
|- 1 < ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) |
20 |
19
|
a1i |
|- ( D e. ( NN \ []NN ) -> 1 < ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) ) |
21 |
3
|
nnge1d |
|- ( D e. ( NN \ []NN ) -> 1 <_ ( D + 1 ) ) |
22 |
|
0le1 |
|- 0 <_ 1 |
23 |
22
|
a1i |
|- ( D e. ( NN \ []NN ) -> 0 <_ 1 ) |
24 |
2
|
nnred |
|- ( D e. ( NN \ []NN ) -> D e. RR ) |
25 |
|
peano2re |
|- ( D e. RR -> ( D + 1 ) e. RR ) |
26 |
24 25
|
syl |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. RR ) |
27 |
3
|
nnnn0d |
|- ( D e. ( NN \ []NN ) -> ( D + 1 ) e. NN0 ) |
28 |
27
|
nn0ge0d |
|- ( D e. ( NN \ []NN ) -> 0 <_ ( D + 1 ) ) |
29 |
1 23 26 28
|
sqrtled |
|- ( D e. ( NN \ []NN ) -> ( 1 <_ ( D + 1 ) <-> ( sqrt ` 1 ) <_ ( sqrt ` ( D + 1 ) ) ) ) |
30 |
21 29
|
mpbid |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) <_ ( sqrt ` ( D + 1 ) ) ) |
31 |
2
|
nnge1d |
|- ( D e. ( NN \ []NN ) -> 1 <_ D ) |
32 |
2
|
nnnn0d |
|- ( D e. ( NN \ []NN ) -> D e. NN0 ) |
33 |
32
|
nn0ge0d |
|- ( D e. ( NN \ []NN ) -> 0 <_ D ) |
34 |
1 23 24 33
|
sqrtled |
|- ( D e. ( NN \ []NN ) -> ( 1 <_ D <-> ( sqrt ` 1 ) <_ ( sqrt ` D ) ) ) |
35 |
31 34
|
mpbid |
|- ( D e. ( NN \ []NN ) -> ( sqrt ` 1 ) <_ ( sqrt ` D ) ) |
36 |
13 13 6 9 30 35
|
le2addd |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` 1 ) + ( sqrt ` 1 ) ) <_ ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) |
37 |
1 14 10 20 36
|
ltletrd |
|- ( D e. ( NN \ []NN ) -> 1 < ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) ) |
38 |
|
pellfundge |
|- ( D e. ( NN \ []NN ) -> ( ( sqrt ` ( D + 1 ) ) + ( sqrt ` D ) ) <_ ( PellFund ` D ) ) |
39 |
1 10 11 37 38
|
ltletrd |
|- ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |