Description: The fundamental Pell solution is a positive real. (Contributed by Stefan O'Rear, 19-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | pellfundrp | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pellfundre | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR ) |
|
2 | 0red | |- ( D e. ( NN \ []NN ) -> 0 e. RR ) |
|
3 | 1red | |- ( D e. ( NN \ []NN ) -> 1 e. RR ) |
|
4 | 0lt1 | |- 0 < 1 |
|
5 | 4 | a1i | |- ( D e. ( NN \ []NN ) -> 0 < 1 ) |
6 | pellfundgt1 | |- ( D e. ( NN \ []NN ) -> 1 < ( PellFund ` D ) ) |
|
7 | 2 3 1 5 6 | lttrd | |- ( D e. ( NN \ []NN ) -> 0 < ( PellFund ` D ) ) |
8 | 1 7 | elrpd | |- ( D e. ( NN \ []NN ) -> ( PellFund ` D ) e. RR+ ) |