| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
| 2 |
|
eldifn |
|- ( D e. ( NN \ []NN ) -> -. D e. []NN ) |
| 3 |
1
|
anim1i |
|- ( ( D e. ( NN \ []NN ) /\ ( sqrt ` D ) e. QQ ) -> ( D e. NN /\ ( sqrt ` D ) e. QQ ) ) |
| 4 |
|
fveq2 |
|- ( a = D -> ( sqrt ` a ) = ( sqrt ` D ) ) |
| 5 |
4
|
eleq1d |
|- ( a = D -> ( ( sqrt ` a ) e. QQ <-> ( sqrt ` D ) e. QQ ) ) |
| 6 |
|
df-squarenn |
|- []NN = { a e. NN | ( sqrt ` a ) e. QQ } |
| 7 |
5 6
|
elrab2 |
|- ( D e. []NN <-> ( D e. NN /\ ( sqrt ` D ) e. QQ ) ) |
| 8 |
3 7
|
sylibr |
|- ( ( D e. ( NN \ []NN ) /\ ( sqrt ` D ) e. QQ ) -> D e. []NN ) |
| 9 |
2 8
|
mtand |
|- ( D e. ( NN \ []NN ) -> -. ( sqrt ` D ) e. QQ ) |
| 10 |
|
pellex |
|- ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) |
| 11 |
1 9 10
|
syl2anc |
|- ( D e. ( NN \ []NN ) -> E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) |
| 12 |
|
simpll |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> D e. ( NN \ []NN ) ) |
| 13 |
|
nnnn0 |
|- ( c e. NN -> c e. NN0 ) |
| 14 |
13
|
adantr |
|- ( ( c e. NN /\ d e. NN ) -> c e. NN0 ) |
| 15 |
14
|
ad2antlr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> c e. NN0 ) |
| 16 |
|
nnnn0 |
|- ( d e. NN -> d e. NN0 ) |
| 17 |
16
|
adantl |
|- ( ( c e. NN /\ d e. NN ) -> d e. NN0 ) |
| 18 |
17
|
ad2antlr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> d e. NN0 ) |
| 19 |
|
simpr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) |
| 20 |
|
pellqrexplicit |
|- ( ( ( D e. ( NN \ []NN ) /\ c e. NN0 /\ d e. NN0 ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) ) |
| 21 |
12 15 18 19 20
|
syl31anc |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) ) |
| 22 |
|
1re |
|- 1 e. RR |
| 23 |
22
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 e. RR ) |
| 24 |
22 22
|
readdcli |
|- ( 1 + 1 ) e. RR |
| 25 |
24
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 + 1 ) e. RR ) |
| 26 |
|
nnre |
|- ( c e. NN -> c e. RR ) |
| 27 |
26
|
ad2antrl |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> c e. RR ) |
| 28 |
1
|
adantr |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> D e. NN ) |
| 29 |
28
|
nnrpd |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> D e. RR+ ) |
| 30 |
29
|
rpsqrtcld |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( sqrt ` D ) e. RR+ ) |
| 31 |
30
|
rpred |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( sqrt ` D ) e. RR ) |
| 32 |
|
nnre |
|- ( d e. NN -> d e. RR ) |
| 33 |
32
|
ad2antll |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> d e. RR ) |
| 34 |
31 33
|
remulcld |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( sqrt ` D ) x. d ) e. RR ) |
| 35 |
27 34
|
readdcld |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( c + ( ( sqrt ` D ) x. d ) ) e. RR ) |
| 36 |
22
|
ltp1i |
|- 1 < ( 1 + 1 ) |
| 37 |
36
|
a1i |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 < ( 1 + 1 ) ) |
| 38 |
|
nnge1 |
|- ( c e. NN -> 1 <_ c ) |
| 39 |
38
|
ad2antrl |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ c ) |
| 40 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 41 |
|
nnge1 |
|- ( D e. NN -> 1 <_ D ) |
| 42 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 43 |
42
|
a1i |
|- ( D e. NN -> ( 1 ^ 2 ) = 1 ) |
| 44 |
|
nncn |
|- ( D e. NN -> D e. CC ) |
| 45 |
44
|
sqsqrtd |
|- ( D e. NN -> ( ( sqrt ` D ) ^ 2 ) = D ) |
| 46 |
41 43 45
|
3brtr4d |
|- ( D e. NN -> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) |
| 47 |
22
|
a1i |
|- ( D e. NN -> 1 e. RR ) |
| 48 |
|
nnrp |
|- ( D e. NN -> D e. RR+ ) |
| 49 |
48
|
rpsqrtcld |
|- ( D e. NN -> ( sqrt ` D ) e. RR+ ) |
| 50 |
49
|
rpred |
|- ( D e. NN -> ( sqrt ` D ) e. RR ) |
| 51 |
|
0le1 |
|- 0 <_ 1 |
| 52 |
51
|
a1i |
|- ( D e. NN -> 0 <_ 1 ) |
| 53 |
49
|
rpge0d |
|- ( D e. NN -> 0 <_ ( sqrt ` D ) ) |
| 54 |
47 50 52 53
|
le2sqd |
|- ( D e. NN -> ( 1 <_ ( sqrt ` D ) <-> ( 1 ^ 2 ) <_ ( ( sqrt ` D ) ^ 2 ) ) ) |
| 55 |
46 54
|
mpbird |
|- ( D e. NN -> 1 <_ ( sqrt ` D ) ) |
| 56 |
28 55
|
syl |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ ( sqrt ` D ) ) |
| 57 |
|
nnge1 |
|- ( d e. NN -> 1 <_ d ) |
| 58 |
57
|
ad2antll |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ d ) |
| 59 |
23 51
|
jctir |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 e. RR /\ 0 <_ 1 ) ) |
| 60 |
|
lemul12a |
|- ( ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( sqrt ` D ) e. RR ) /\ ( ( 1 e. RR /\ 0 <_ 1 ) /\ d e. RR ) ) -> ( ( 1 <_ ( sqrt ` D ) /\ 1 <_ d ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) ) |
| 61 |
59 31 59 33 60
|
syl22anc |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( 1 <_ ( sqrt ` D ) /\ 1 <_ d ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) ) |
| 62 |
56 58 61
|
mp2and |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 x. 1 ) <_ ( ( sqrt ` D ) x. d ) ) |
| 63 |
40 62
|
eqbrtrrid |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 <_ ( ( sqrt ` D ) x. d ) ) |
| 64 |
23 23 27 34 39 63
|
le2addd |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( 1 + 1 ) <_ ( c + ( ( sqrt ` D ) x. d ) ) ) |
| 65 |
23 25 35 37 64
|
ltletrd |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) |
| 66 |
65
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) |
| 67 |
|
breq2 |
|- ( x = ( c + ( ( sqrt ` D ) x. d ) ) -> ( 1 < x <-> 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) ) |
| 68 |
67
|
rspcev |
|- ( ( ( c + ( ( sqrt ` D ) x. d ) ) e. ( Pell1QR ` D ) /\ 1 < ( c + ( ( sqrt ` D ) x. d ) ) ) -> E. x e. ( Pell1QR ` D ) 1 < x ) |
| 69 |
21 66 68
|
syl2anc |
|- ( ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) /\ ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 ) -> E. x e. ( Pell1QR ` D ) 1 < x ) |
| 70 |
69
|
ex |
|- ( ( D e. ( NN \ []NN ) /\ ( c e. NN /\ d e. NN ) ) -> ( ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 -> E. x e. ( Pell1QR ` D ) 1 < x ) ) |
| 71 |
70
|
rexlimdvva |
|- ( D e. ( NN \ []NN ) -> ( E. c e. NN E. d e. NN ( ( c ^ 2 ) - ( D x. ( d ^ 2 ) ) ) = 1 -> E. x e. ( Pell1QR ` D ) 1 < x ) ) |
| 72 |
11 71
|
mpd |
|- ( D e. ( NN \ []NN ) -> E. x e. ( Pell1QR ` D ) 1 < x ) |