| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							nn0re | 
							 |-  ( A e. NN0 -> A e. RR )  | 
						
						
							| 2 | 
							
								1
							 | 
							3ad2ant2 | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> A e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							eldifi | 
							 |-  ( D e. ( NN \ []NN ) -> D e. NN )  | 
						
						
							| 4 | 
							
								3
							 | 
							3ad2ant1 | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. NN )  | 
						
						
							| 5 | 
							
								4
							 | 
							nnrpd | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. RR+ )  | 
						
						
							| 6 | 
							
								5
							 | 
							rpsqrtcld | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR+ )  | 
						
						
							| 7 | 
							
								6
							 | 
							rpred | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR )  | 
						
						
							| 8 | 
							
								
							 | 
							nn0re | 
							 |-  ( B e. NN0 -> B e. RR )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> B e. RR )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							remulcld | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( sqrt ` D ) x. B ) e. RR )  | 
						
						
							| 11 | 
							
								2 10
							 | 
							readdcld | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR )  | 
						
						
							| 13 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> A e. NN0 )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> B e. NN0 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqidd | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 )  | 
						
						
							| 17 | 
							
								
							 | 
							oveq1 | 
							 |-  ( a = A -> ( a + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. b ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqeq2d | 
							 |-  ( a = A -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							 |-  ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq1d | 
							 |-  ( a = A -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eqeq1d | 
							 |-  ( a = A -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							anbi12d | 
							 |-  ( a = A -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq2 | 
							 |-  ( b = B -> ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. B ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							 |-  ( b = B -> ( A + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. B ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqeq2d | 
							 |-  ( b = B -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							oveq1 | 
							 |-  ( b = B -> ( b ^ 2 ) = ( B ^ 2 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq2d | 
							 |-  ( b = B -> ( D x. ( b ^ 2 ) ) = ( D x. ( B ^ 2 ) ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq2d | 
							 |-  ( b = B -> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqeq1d | 
							 |-  ( b = B -> ( ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) )  | 
						
						
							| 30 | 
							
								25 29
							 | 
							anbi12d | 
							 |-  ( b = B -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) )  | 
						
						
							| 31 | 
							
								22 30
							 | 
							rspc2ev | 
							 |-  ( ( A e. NN0 /\ B e. NN0 /\ ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) )  | 
						
						
							| 32 | 
							
								13 14 15 16 31
							 | 
							syl112anc | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							elpell1qr | 
							 |-  ( D e. ( NN \ []NN ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							3ad2ant1 | 
							 |-  ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantr | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) )  | 
						
						
							| 36 | 
							
								12 32 35
							 | 
							mpbir2and | 
							 |-  ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) )  |