Step |
Hyp |
Ref |
Expression |
1 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
2 |
1
|
3ad2ant2 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> A e. RR ) |
3 |
|
eldifi |
|- ( D e. ( NN \ []NN ) -> D e. NN ) |
4 |
3
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. NN ) |
5 |
4
|
nnrpd |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> D e. RR+ ) |
6 |
5
|
rpsqrtcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR+ ) |
7 |
6
|
rpred |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( sqrt ` D ) e. RR ) |
8 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
9 |
8
|
3ad2ant3 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> B e. RR ) |
10 |
7 9
|
remulcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( sqrt ` D ) x. B ) e. RR ) |
11 |
2 10
|
readdcld |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) |
12 |
11
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. RR ) |
13 |
|
simpl2 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> A e. NN0 ) |
14 |
|
simpl3 |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> B e. NN0 ) |
15 |
|
eqidd |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) |
16 |
|
simpr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) |
17 |
|
oveq1 |
|- ( a = A -> ( a + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) |
18 |
17
|
eqeq2d |
|- ( a = A -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) ) ) |
19 |
|
oveq1 |
|- ( a = A -> ( a ^ 2 ) = ( A ^ 2 ) ) |
20 |
19
|
oveq1d |
|- ( a = A -> ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) ) |
21 |
20
|
eqeq1d |
|- ( a = A -> ( ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
22 |
18 21
|
anbi12d |
|- ( a = A -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) |
23 |
|
oveq2 |
|- ( b = B -> ( ( sqrt ` D ) x. b ) = ( ( sqrt ` D ) x. B ) ) |
24 |
23
|
oveq2d |
|- ( b = B -> ( A + ( ( sqrt ` D ) x. b ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) |
25 |
24
|
eqeq2d |
|- ( b = B -> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) <-> ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) ) ) |
26 |
|
oveq1 |
|- ( b = B -> ( b ^ 2 ) = ( B ^ 2 ) ) |
27 |
26
|
oveq2d |
|- ( b = B -> ( D x. ( b ^ 2 ) ) = ( D x. ( B ^ 2 ) ) ) |
28 |
27
|
oveq2d |
|- ( b = B -> ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) |
29 |
28
|
eqeq1d |
|- ( b = B -> ( ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 <-> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) |
30 |
25 29
|
anbi12d |
|- ( b = B -> ( ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. b ) ) /\ ( ( A ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) ) |
31 |
22 30
|
rspc2ev |
|- ( ( A e. NN0 /\ B e. NN0 /\ ( ( A + ( ( sqrt ` D ) x. B ) ) = ( A + ( ( sqrt ` D ) x. B ) ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
32 |
13 14 15 16 31
|
syl112anc |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) |
33 |
|
elpell1qr |
|- ( D e. ( NN \ []NN ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
34 |
33
|
3ad2ant1 |
|- ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
35 |
34
|
adantr |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) <-> ( ( A + ( ( sqrt ` D ) x. B ) ) e. RR /\ E. a e. NN0 E. b e. NN0 ( ( A + ( ( sqrt ` D ) x. B ) ) = ( a + ( ( sqrt ` D ) x. b ) ) /\ ( ( a ^ 2 ) - ( D x. ( b ^ 2 ) ) ) = 1 ) ) ) ) |
36 |
12 32 35
|
mpbir2and |
|- ( ( ( D e. ( NN \ []NN ) /\ A e. NN0 /\ B e. NN0 ) /\ ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) = 1 ) -> ( A + ( ( sqrt ` D ) x. B ) ) e. ( Pell1QR ` D ) ) |