| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lpcls.1 |
|- X = U. J |
| 2 |
1
|
lpcls |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |
| 3 |
2
|
sseq2d |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) ) ) |
| 4 |
|
t1top |
|- ( J e. Fre -> J e. Top ) |
| 5 |
1
|
clslp |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 6 |
4 5
|
sylan |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) |
| 7 |
6
|
sseq1d |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) ) |
| 8 |
|
ssequn1 |
|- ( S C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) ) |
| 9 |
|
ssun2 |
|- ( ( limPt ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) |
| 10 |
|
eqss |
|- ( ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) <-> ( ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) /\ ( ( limPt ` J ) ` S ) C_ ( S u. ( ( limPt ` J ) ` S ) ) ) ) |
| 11 |
9 10
|
mpbiran2 |
|- ( ( S u. ( ( limPt ` J ) ` S ) ) = ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) |
| 12 |
8 11
|
bitri |
|- ( S C_ ( ( limPt ` J ) ` S ) <-> ( S u. ( ( limPt ` J ) ` S ) ) C_ ( ( limPt ` J ) ` S ) ) |
| 13 |
7 12
|
bitr4di |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` S ) <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 14 |
3 13
|
bitr2d |
|- ( ( J e. Fre /\ S C_ X ) -> ( S C_ ( ( limPt ` J ) ` S ) <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 15 |
|
eqid |
|- ( J |`t S ) = ( J |`t S ) |
| 16 |
1 15
|
restperf |
|- ( ( J e. Top /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 17 |
4 16
|
sylan |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> S C_ ( ( limPt ` J ) ` S ) ) ) |
| 18 |
1
|
clsss3 |
|- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 19 |
|
eqid |
|- ( J |`t ( ( cls ` J ) ` S ) ) = ( J |`t ( ( cls ` J ) ` S ) ) |
| 20 |
1 19
|
restperf |
|- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 21 |
18 20
|
syldan |
|- ( ( J e. Top /\ S C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 22 |
4 21
|
sylan |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t ( ( cls ` J ) ` S ) ) e. Perf <-> ( ( cls ` J ) ` S ) C_ ( ( limPt ` J ) ` ( ( cls ` J ) ` S ) ) ) ) |
| 23 |
14 17 22
|
3bitr4d |
|- ( ( J e. Fre /\ S C_ X ) -> ( ( J |`t S ) e. Perf <-> ( J |`t ( ( cls ` J ) ` S ) ) e. Perf ) ) |