Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|- ( R e. ( 0 ... N ) -> R e. NN0 ) |
2 |
1
|
faccld |
|- ( R e. ( 0 ... N ) -> ( ! ` R ) e. NN ) |
3 |
|
fznn0sub |
|- ( R e. ( 0 ... N ) -> ( N - R ) e. NN0 ) |
4 |
3
|
faccld |
|- ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. NN ) |
5 |
4 2
|
nnmulcld |
|- ( R e. ( 0 ... N ) -> ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN ) |
6 |
|
elfz3nn0 |
|- ( R e. ( 0 ... N ) -> N e. NN0 ) |
7 |
|
faccl |
|- ( N e. NN0 -> ( ! ` N ) e. NN ) |
8 |
7
|
nncnd |
|- ( N e. NN0 -> ( ! ` N ) e. CC ) |
9 |
6 8
|
syl |
|- ( R e. ( 0 ... N ) -> ( ! ` N ) e. CC ) |
10 |
4
|
nncnd |
|- ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. CC ) |
11 |
2
|
nncnd |
|- ( R e. ( 0 ... N ) -> ( ! ` R ) e. CC ) |
12 |
|
facne0 |
|- ( R e. NN0 -> ( ! ` R ) =/= 0 ) |
13 |
1 12
|
syl |
|- ( R e. ( 0 ... N ) -> ( ! ` R ) =/= 0 ) |
14 |
10 11 13
|
divcan4d |
|- ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) = ( ! ` ( N - R ) ) ) |
15 |
14 4
|
eqeltrd |
|- ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN ) |
16 |
|
bcval2 |
|- ( R e. ( 0 ... N ) -> ( N _C R ) = ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) ) |
17 |
|
bccl2 |
|- ( R e. ( 0 ... N ) -> ( N _C R ) e. NN ) |
18 |
16 17
|
eqeltrrd |
|- ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) |
19 |
|
nndivtr |
|- ( ( ( ( ! ` R ) e. NN /\ ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN /\ ( ! ` N ) e. CC ) /\ ( ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN /\ ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |
20 |
2 5 9 15 18 19
|
syl32anc |
|- ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |