| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfznn0 |  |-  ( R e. ( 0 ... N ) -> R e. NN0 ) | 
						
							| 2 | 1 | faccld |  |-  ( R e. ( 0 ... N ) -> ( ! ` R ) e. NN ) | 
						
							| 3 |  | fznn0sub |  |-  ( R e. ( 0 ... N ) -> ( N - R ) e. NN0 ) | 
						
							| 4 | 3 | faccld |  |-  ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. NN ) | 
						
							| 5 | 4 2 | nnmulcld |  |-  ( R e. ( 0 ... N ) -> ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN ) | 
						
							| 6 |  | elfz3nn0 |  |-  ( R e. ( 0 ... N ) -> N e. NN0 ) | 
						
							| 7 |  | faccl |  |-  ( N e. NN0 -> ( ! ` N ) e. NN ) | 
						
							| 8 | 7 | nncnd |  |-  ( N e. NN0 -> ( ! ` N ) e. CC ) | 
						
							| 9 | 6 8 | syl |  |-  ( R e. ( 0 ... N ) -> ( ! ` N ) e. CC ) | 
						
							| 10 | 4 | nncnd |  |-  ( R e. ( 0 ... N ) -> ( ! ` ( N - R ) ) e. CC ) | 
						
							| 11 | 2 | nncnd |  |-  ( R e. ( 0 ... N ) -> ( ! ` R ) e. CC ) | 
						
							| 12 |  | facne0 |  |-  ( R e. NN0 -> ( ! ` R ) =/= 0 ) | 
						
							| 13 | 1 12 | syl |  |-  ( R e. ( 0 ... N ) -> ( ! ` R ) =/= 0 ) | 
						
							| 14 | 10 11 13 | divcan4d |  |-  ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) = ( ! ` ( N - R ) ) ) | 
						
							| 15 | 14 4 | eqeltrd |  |-  ( R e. ( 0 ... N ) -> ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN ) | 
						
							| 16 |  | bcval2 |  |-  ( R e. ( 0 ... N ) -> ( N _C R ) = ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) ) | 
						
							| 17 |  | bccl2 |  |-  ( R e. ( 0 ... N ) -> ( N _C R ) e. NN ) | 
						
							| 18 | 16 17 | eqeltrrd |  |-  ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) | 
						
							| 19 |  | nndivtr |  |-  ( ( ( ( ! ` R ) e. NN /\ ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) e. NN /\ ( ! ` N ) e. CC ) /\ ( ( ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) / ( ! ` R ) ) e. NN /\ ( ( ! ` N ) / ( ( ! ` ( N - R ) ) x. ( ! ` R ) ) ) e. NN ) ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) | 
						
							| 20 | 2 5 9 15 18 19 | syl32anc |  |-  ( R e. ( 0 ... N ) -> ( ( ! ` N ) / ( ! ` R ) ) e. NN ) |