Metamath Proof Explorer


Theorem permsetexOLD

Description: Obsolete version of f1osetex as of 8-Aug-2024. (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion permsetexOLD
|- ( A e. V -> { f | f : A -1-1-onto-> A } e. _V )

Proof

Step Hyp Ref Expression
1 mapex
 |-  ( ( A e. V /\ A e. V ) -> { f | f : A --> A } e. _V )
2 1 anidms
 |-  ( A e. V -> { f | f : A --> A } e. _V )
3 f1of
 |-  ( f : A -1-1-onto-> A -> f : A --> A )
4 3 ss2abi
 |-  { f | f : A -1-1-onto-> A } C_ { f | f : A --> A }
5 4 a1i
 |-  ( A e. V -> { f | f : A -1-1-onto-> A } C_ { f | f : A --> A } )
6 2 5 ssexd
 |-  ( A e. V -> { f | f : A -1-1-onto-> A } e. _V )