Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
perpdrag.1 |
|- ( ph -> A e. D ) |
7 |
|
perpdrag.2 |
|- ( ph -> B e. D ) |
8 |
|
perpdrag.3 |
|- ( ph -> C e. P ) |
9 |
|
perpdrag.4 |
|- ( ph -> D ( perpG ` G ) ( B L C ) ) |
10 |
|
eqidd |
|- ( ( ph /\ A = B ) -> A = A ) |
11 |
|
simpr |
|- ( ( ph /\ A = B ) -> A = B ) |
12 |
|
eqidd |
|- ( ( ph /\ A = B ) -> C = C ) |
13 |
10 11 12
|
s3eqd |
|- ( ( ph /\ A = B ) -> <" A A C "> = <" A B C "> ) |
14 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
15 |
4 5 9
|
perpln1 |
|- ( ph -> D e. ran L ) |
16 |
1 4 3 5 15 6
|
tglnpt |
|- ( ph -> A e. P ) |
17 |
1 2 3 4 14 5 8 16 8
|
ragtrivb |
|- ( ph -> <" C A A "> e. ( raG ` G ) ) |
18 |
1 2 3 4 14 5 8 16 16 17
|
ragcom |
|- ( ph -> <" A A C "> e. ( raG ` G ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ A = B ) -> <" A A C "> e. ( raG ` G ) ) |
20 |
13 19
|
eqeltrrd |
|- ( ( ph /\ A = B ) -> <" A B C "> e. ( raG ` G ) ) |
21 |
5
|
adantr |
|- ( ( ph /\ A =/= B ) -> G e. TarskiG ) |
22 |
16
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. P ) |
23 |
1 4 3 5 15 7
|
tglnpt |
|- ( ph -> B e. P ) |
24 |
23
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. P ) |
25 |
7
|
adantr |
|- ( ( ph /\ A =/= B ) -> B e. D ) |
26 |
|
simpr |
|- ( ( ph /\ A =/= B ) -> A =/= B ) |
27 |
15
|
adantr |
|- ( ( ph /\ A =/= B ) -> D e. ran L ) |
28 |
6
|
adantr |
|- ( ( ph /\ A =/= B ) -> A e. D ) |
29 |
1 3 4 21 22 24 26 26 27 28 25
|
tglinethru |
|- ( ( ph /\ A =/= B ) -> D = ( A L B ) ) |
30 |
25 29
|
eleqtrd |
|- ( ( ph /\ A =/= B ) -> B e. ( A L B ) ) |
31 |
8
|
adantr |
|- ( ( ph /\ A =/= B ) -> C e. P ) |
32 |
9
|
adantr |
|- ( ( ph /\ A =/= B ) -> D ( perpG ` G ) ( B L C ) ) |
33 |
29 32
|
eqbrtrrd |
|- ( ( ph /\ A =/= B ) -> ( A L B ) ( perpG ` G ) ( B L C ) ) |
34 |
1 2 3 4 21 22 24 30 31 33
|
perprag |
|- ( ( ph /\ A =/= B ) -> <" A B C "> e. ( raG ` G ) ) |
35 |
20 34
|
pm2.61dane |
|- ( ph -> <" A B C "> e. ( raG ` G ) ) |