Step |
Hyp |
Ref |
Expression |
1 |
|
perpln.l |
|- L = ( LineG ` G ) |
2 |
|
perpln.1 |
|- ( ph -> G e. TarskiG ) |
3 |
|
perpln.2 |
|- ( ph -> A ( perpG ` G ) B ) |
4 |
|
df-perpg |
|- perpG = ( g e. _V |-> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } ) |
5 |
|
simpr |
|- ( ( ph /\ g = G ) -> g = G ) |
6 |
5
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( LineG ` g ) = ( LineG ` G ) ) |
7 |
6 1
|
eqtr4di |
|- ( ( ph /\ g = G ) -> ( LineG ` g ) = L ) |
8 |
7
|
rneqd |
|- ( ( ph /\ g = G ) -> ran ( LineG ` g ) = ran L ) |
9 |
8
|
eleq2d |
|- ( ( ph /\ g = G ) -> ( a e. ran ( LineG ` g ) <-> a e. ran L ) ) |
10 |
8
|
eleq2d |
|- ( ( ph /\ g = G ) -> ( b e. ran ( LineG ` g ) <-> b e. ran L ) ) |
11 |
9 10
|
anbi12d |
|- ( ( ph /\ g = G ) -> ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) <-> ( a e. ran L /\ b e. ran L ) ) ) |
12 |
5
|
fveq2d |
|- ( ( ph /\ g = G ) -> ( raG ` g ) = ( raG ` G ) ) |
13 |
12
|
eleq2d |
|- ( ( ph /\ g = G ) -> ( <" u x v "> e. ( raG ` g ) <-> <" u x v "> e. ( raG ` G ) ) ) |
14 |
13
|
ralbidv |
|- ( ( ph /\ g = G ) -> ( A. v e. b <" u x v "> e. ( raG ` g ) <-> A. v e. b <" u x v "> e. ( raG ` G ) ) ) |
15 |
14
|
rexralbidv |
|- ( ( ph /\ g = G ) -> ( E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) <-> E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) ) |
16 |
11 15
|
anbi12d |
|- ( ( ph /\ g = G ) -> ( ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) <-> ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) ) ) |
17 |
16
|
opabbidv |
|- ( ( ph /\ g = G ) -> { <. a , b >. | ( ( a e. ran ( LineG ` g ) /\ b e. ran ( LineG ` g ) ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` g ) ) } = { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } ) |
18 |
2
|
elexd |
|- ( ph -> G e. _V ) |
19 |
1
|
fvexi |
|- L e. _V |
20 |
|
rnexg |
|- ( L e. _V -> ran L e. _V ) |
21 |
19 20
|
mp1i |
|- ( ph -> ran L e. _V ) |
22 |
21 21
|
xpexd |
|- ( ph -> ( ran L X. ran L ) e. _V ) |
23 |
|
opabssxp |
|- { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } C_ ( ran L X. ran L ) |
24 |
23
|
a1i |
|- ( ph -> { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } C_ ( ran L X. ran L ) ) |
25 |
22 24
|
ssexd |
|- ( ph -> { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } e. _V ) |
26 |
4 17 18 25
|
fvmptd2 |
|- ( ph -> ( perpG ` G ) = { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } ) |
27 |
26
|
rneqd |
|- ( ph -> ran ( perpG ` G ) = ran { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } ) |
28 |
23
|
rnssi |
|- ran { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } C_ ran ( ran L X. ran L ) |
29 |
27 28
|
eqsstrdi |
|- ( ph -> ran ( perpG ` G ) C_ ran ( ran L X. ran L ) ) |
30 |
|
rnxpss |
|- ran ( ran L X. ran L ) C_ ran L |
31 |
29 30
|
sstrdi |
|- ( ph -> ran ( perpG ` G ) C_ ran L ) |
32 |
|
relopabv |
|- Rel { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } |
33 |
26
|
releqd |
|- ( ph -> ( Rel ( perpG ` G ) <-> Rel { <. a , b >. | ( ( a e. ran L /\ b e. ran L ) /\ E. x e. ( a i^i b ) A. u e. a A. v e. b <" u x v "> e. ( raG ` G ) ) } ) ) |
34 |
32 33
|
mpbiri |
|- ( ph -> Rel ( perpG ` G ) ) |
35 |
|
brrelex12 |
|- ( ( Rel ( perpG ` G ) /\ A ( perpG ` G ) B ) -> ( A e. _V /\ B e. _V ) ) |
36 |
34 3 35
|
syl2anc |
|- ( ph -> ( A e. _V /\ B e. _V ) ) |
37 |
36
|
simpld |
|- ( ph -> A e. _V ) |
38 |
36
|
simprd |
|- ( ph -> B e. _V ) |
39 |
|
brelrng |
|- ( ( A e. _V /\ B e. _V /\ A ( perpG ` G ) B ) -> B e. ran ( perpG ` G ) ) |
40 |
37 38 3 39
|
syl3anc |
|- ( ph -> B e. ran ( perpG ` G ) ) |
41 |
31 40
|
sseldd |
|- ( ph -> B e. ran L ) |