Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
|- P = ( Base ` G ) |
2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
perprag.1 |
|- ( ph -> A e. P ) |
7 |
|
perprag.2 |
|- ( ph -> B e. P ) |
8 |
|
perprag.3 |
|- ( ph -> C e. ( A L B ) ) |
9 |
|
perprag.4 |
|- ( ph -> D e. P ) |
10 |
|
perprag.5 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( C L D ) ) |
11 |
|
eqidd |
|- ( ( ph /\ C = D ) -> A = A ) |
12 |
|
simpr |
|- ( ( ph /\ C = D ) -> C = D ) |
13 |
|
eqidd |
|- ( ( ph /\ C = D ) -> D = D ) |
14 |
11 12 13
|
s3eqd |
|- ( ( ph /\ C = D ) -> <" A C D "> = <" A D D "> ) |
15 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
16 |
1 2 3 4 15 5 6 9 9
|
ragtrivb |
|- ( ph -> <" A D D "> e. ( raG ` G ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ C = D ) -> <" A D D "> e. ( raG ` G ) ) |
18 |
14 17
|
eqeltrd |
|- ( ( ph /\ C = D ) -> <" A C D "> e. ( raG ` G ) ) |
19 |
5
|
adantr |
|- ( ( ph /\ C =/= D ) -> G e. TarskiG ) |
20 |
1 4 3 5 6 7 8
|
tglngne |
|- ( ph -> A =/= B ) |
21 |
1 3 4 5 6 7 20
|
tgelrnln |
|- ( ph -> ( A L B ) e. ran L ) |
22 |
21
|
adantr |
|- ( ( ph /\ C =/= D ) -> ( A L B ) e. ran L ) |
23 |
1 4 3 5 21 8
|
tglnpt |
|- ( ph -> C e. P ) |
24 |
23
|
adantr |
|- ( ( ph /\ C =/= D ) -> C e. P ) |
25 |
9
|
adantr |
|- ( ( ph /\ C =/= D ) -> D e. P ) |
26 |
|
simpr |
|- ( ( ph /\ C =/= D ) -> C =/= D ) |
27 |
1 3 4 19 24 25 26
|
tgelrnln |
|- ( ( ph /\ C =/= D ) -> ( C L D ) e. ran L ) |
28 |
8
|
adantr |
|- ( ( ph /\ C =/= D ) -> C e. ( A L B ) ) |
29 |
1 3 4 19 24 25 26
|
tglinerflx1 |
|- ( ( ph /\ C =/= D ) -> C e. ( C L D ) ) |
30 |
28 29
|
elind |
|- ( ( ph /\ C =/= D ) -> C e. ( ( A L B ) i^i ( C L D ) ) ) |
31 |
1 3 4 5 6 7 20
|
tglinerflx1 |
|- ( ph -> A e. ( A L B ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ C =/= D ) -> A e. ( A L B ) ) |
33 |
1 3 4 19 24 25 26
|
tglinerflx2 |
|- ( ( ph /\ C =/= D ) -> D e. ( C L D ) ) |
34 |
10
|
adantr |
|- ( ( ph /\ C =/= D ) -> ( A L B ) ( perpG ` G ) ( C L D ) ) |
35 |
1 2 3 4 19 22 27 30 32 33 34
|
isperp2d |
|- ( ( ph /\ C =/= D ) -> <" A C D "> e. ( raG ` G ) ) |
36 |
18 35
|
pm2.61dane |
|- ( ph -> <" A C D "> e. ( raG ` G ) ) |