Metamath Proof Explorer


Theorem pet0

Description: Class A is a partition by the null class if and only if the cosets by the null class are in equivalence relation on it. (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion pet0
|- ( (/) Part A <-> ,~ (/) ErALTV A )

Proof

Step Hyp Ref Expression
1 pet02
 |-  ( ( Disj (/) /\ ( dom (/) /. (/) ) = A ) <-> ( EqvRel ,~ (/) /\ ( dom ,~ (/) /. ,~ (/) ) = A ) )
2 dfpart2
 |-  ( (/) Part A <-> ( Disj (/) /\ ( dom (/) /. (/) ) = A ) )
3 dferALTV2
 |-  ( ,~ (/) ErALTV A <-> ( EqvRel ,~ (/) /\ ( dom ,~ (/) /. ,~ (/) ) = A ) )
4 1 2 3 3bitr4i
 |-  ( (/) Part A <-> ,~ (/) ErALTV A )