Metamath Proof Explorer


Theorem petincnvepres

Description: The shortest form of a partition-equivalence theorem with intersection and general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion petincnvepres
|- ( ( R i^i ( `' _E |` A ) ) Part A <-> ,~ ( R i^i ( `' _E |` A ) ) ErALTV A )

Proof

Step Hyp Ref Expression
1 petincnvepres2
 |-  ( ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R i^i ( `' _E |` A ) ) /\ ( dom ,~ ( R i^i ( `' _E |` A ) ) /. ,~ ( R i^i ( `' _E |` A ) ) ) = A ) )
2 dfpart2
 |-  ( ( R i^i ( `' _E |` A ) ) Part A <-> ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) )
3 dferALTV2
 |-  ( ,~ ( R i^i ( `' _E |` A ) ) ErALTV A <-> ( EqvRel ,~ ( R i^i ( `' _E |` A ) ) /\ ( dom ,~ ( R i^i ( `' _E |` A ) ) /. ,~ ( R i^i ( `' _E |` A ) ) ) = A ) )
4 1 2 3 3bitr4i
 |-  ( ( R i^i ( `' _E |` A ) ) Part A <-> ,~ ( R i^i ( `' _E |` A ) ) ErALTV A )