| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pexmidlem.l |
|- .<_ = ( le ` K ) |
| 2 |
|
pexmidlem.j |
|- .\/ = ( join ` K ) |
| 3 |
|
pexmidlem.a |
|- A = ( Atoms ` K ) |
| 4 |
|
pexmidlem.p |
|- .+ = ( +P ` K ) |
| 5 |
|
pexmidlem.o |
|- ._|_ = ( _|_P ` K ) |
| 6 |
|
pexmidlem.m |
|- M = ( X .+ { p } ) |
| 7 |
|
simpl1 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> K e. HL ) |
| 8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> K e. Lat ) |
| 9 |
|
simpl2 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> X C_ A ) |
| 10 |
|
simpl3 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> p e. A ) |
| 11 |
|
simprl |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> X =/= (/) ) |
| 12 |
|
inss2 |
|- ( ( ._|_ ` X ) i^i M ) C_ M |
| 13 |
12
|
sseli |
|- ( q e. ( ( ._|_ ` X ) i^i M ) -> q e. M ) |
| 14 |
13 6
|
eleqtrdi |
|- ( q e. ( ( ._|_ ` X ) i^i M ) -> q e. ( X .+ { p } ) ) |
| 15 |
14
|
ad2antll |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> q e. ( X .+ { p } ) ) |
| 16 |
1 2 3 4
|
elpaddatiN |
|- ( ( ( K e. Lat /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( X .+ { p } ) ) ) -> E. r e. X q .<_ ( r .\/ p ) ) |
| 17 |
8 9 10 11 15 16
|
syl32anc |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> E. r e. X q .<_ ( r .\/ p ) ) |
| 18 |
|
simp1 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> ( K e. HL /\ X C_ A /\ p e. A ) ) |
| 19 |
|
simp3l |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> r e. X ) |
| 20 |
|
inss1 |
|- ( ( ._|_ ` X ) i^i M ) C_ ( ._|_ ` X ) |
| 21 |
|
simp2r |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> q e. ( ( ._|_ ` X ) i^i M ) ) |
| 22 |
20 21
|
sselid |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> q e. ( ._|_ ` X ) ) |
| 23 |
|
simp3r |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> q .<_ ( r .\/ p ) ) |
| 24 |
1 2 3 4 5 6
|
pexmidlem3N |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) ) /\ q .<_ ( r .\/ p ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) |
| 25 |
18 19 22 23 24
|
syl121anc |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) /\ ( r e. X /\ q .<_ ( r .\/ p ) ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) |
| 26 |
25
|
3expia |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> ( ( r e. X /\ q .<_ ( r .\/ p ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) ) |
| 27 |
26
|
expd |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> ( r e. X -> ( q .<_ ( r .\/ p ) -> p e. ( X .+ ( ._|_ ` X ) ) ) ) ) |
| 28 |
27
|
rexlimdv |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> ( E. r e. X q .<_ ( r .\/ p ) -> p e. ( X .+ ( ._|_ ` X ) ) ) ) |
| 29 |
17 28
|
mpd |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( X =/= (/) /\ q e. ( ( ._|_ ` X ) i^i M ) ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) |