Step |
Hyp |
Ref |
Expression |
1 |
|
pf1const.b |
|- B = ( Base ` R ) |
2 |
|
pf1const.q |
|- Q = ran ( eval1 ` R ) |
3 |
|
eqid |
|- ( eval1 ` R ) = ( eval1 ` R ) |
4 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
5 |
|
eqid |
|- ( algSc ` ( Poly1 ` R ) ) = ( algSc ` ( Poly1 ` R ) ) |
6 |
3 4 1 5
|
evl1sca |
|- ( ( R e. CRing /\ X e. B ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) = ( B X. { X } ) ) |
7 |
|
eqid |
|- ( R ^s B ) = ( R ^s B ) |
8 |
3 4 7 1
|
evl1rhm |
|- ( R e. CRing -> ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) ) |
9 |
8
|
adantr |
|- ( ( R e. CRing /\ X e. B ) -> ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) ) |
10 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
11 |
|
eqid |
|- ( Base ` ( R ^s B ) ) = ( Base ` ( R ^s B ) ) |
12 |
10 11
|
rhmf |
|- ( ( eval1 ` R ) e. ( ( Poly1 ` R ) RingHom ( R ^s B ) ) -> ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) ) |
13 |
|
ffn |
|- ( ( eval1 ` R ) : ( Base ` ( Poly1 ` R ) ) --> ( Base ` ( R ^s B ) ) -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) ) |
14 |
9 12 13
|
3syl |
|- ( ( R e. CRing /\ X e. B ) -> ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) ) |
15 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
16 |
15
|
adantr |
|- ( ( R e. CRing /\ X e. B ) -> R e. Ring ) |
17 |
4 5 1 10
|
ply1sclf |
|- ( R e. Ring -> ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) ) |
18 |
16 17
|
syl |
|- ( ( R e. CRing /\ X e. B ) -> ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) ) |
19 |
|
ffvelrn |
|- ( ( ( algSc ` ( Poly1 ` R ) ) : B --> ( Base ` ( Poly1 ` R ) ) /\ X e. B ) -> ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) |
20 |
18 19
|
sylancom |
|- ( ( R e. CRing /\ X e. B ) -> ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) |
21 |
|
fnfvelrn |
|- ( ( ( eval1 ` R ) Fn ( Base ` ( Poly1 ` R ) ) /\ ( ( algSc ` ( Poly1 ` R ) ) ` X ) e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) e. ran ( eval1 ` R ) ) |
22 |
14 20 21
|
syl2anc |
|- ( ( R e. CRing /\ X e. B ) -> ( ( eval1 ` R ) ` ( ( algSc ` ( Poly1 ` R ) ) ` X ) ) e. ran ( eval1 ` R ) ) |
23 |
6 22
|
eqeltrrd |
|- ( ( R e. CRing /\ X e. B ) -> ( B X. { X } ) e. ran ( eval1 ` R ) ) |
24 |
23 2
|
eleqtrrdi |
|- ( ( R e. CRing /\ X e. B ) -> ( B X. { X } ) e. Q ) |