| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pf1rcl.q |
|- Q = ran ( eval1 ` R ) |
| 2 |
|
n0i |
|- ( X e. Q -> -. Q = (/) ) |
| 3 |
|
eqid |
|- ( eval1 ` R ) = ( eval1 ` R ) |
| 4 |
|
eqid |
|- ( 1o eval R ) = ( 1o eval R ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
3 4 5
|
evl1fval |
|- ( eval1 ` R ) = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
| 7 |
6
|
rneqi |
|- ran ( eval1 ` R ) = ran ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) |
| 8 |
|
rnco2 |
|- ran ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) o. ( 1o eval R ) ) = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) |
| 9 |
1 7 8
|
3eqtri |
|- Q = ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) |
| 10 |
|
inss2 |
|- ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) C_ ran ( 1o eval R ) |
| 11 |
|
neq0 |
|- ( -. ran ( 1o eval R ) = (/) <-> E. x x e. ran ( 1o eval R ) ) |
| 12 |
4 5
|
evlval |
|- ( 1o eval R ) = ( ( 1o evalSub R ) ` ( Base ` R ) ) |
| 13 |
12
|
rneqi |
|- ran ( 1o eval R ) = ran ( ( 1o evalSub R ) ` ( Base ` R ) ) |
| 14 |
13
|
mpfrcl |
|- ( x e. ran ( 1o eval R ) -> ( 1o e. _V /\ R e. CRing /\ ( Base ` R ) e. ( SubRing ` R ) ) ) |
| 15 |
14
|
simp2d |
|- ( x e. ran ( 1o eval R ) -> R e. CRing ) |
| 16 |
15
|
exlimiv |
|- ( E. x x e. ran ( 1o eval R ) -> R e. CRing ) |
| 17 |
11 16
|
sylbi |
|- ( -. ran ( 1o eval R ) = (/) -> R e. CRing ) |
| 18 |
17
|
con1i |
|- ( -. R e. CRing -> ran ( 1o eval R ) = (/) ) |
| 19 |
|
sseq0 |
|- ( ( ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) C_ ran ( 1o eval R ) /\ ran ( 1o eval R ) = (/) ) -> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
| 20 |
10 18 19
|
sylancr |
|- ( -. R e. CRing -> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
| 21 |
|
imadisj |
|- ( ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) = (/) <-> ( dom ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) i^i ran ( 1o eval R ) ) = (/) ) |
| 22 |
20 21
|
sylibr |
|- ( -. R e. CRing -> ( ( x e. ( ( Base ` R ) ^m ( ( Base ` R ) ^m 1o ) ) |-> ( x o. ( y e. ( Base ` R ) |-> ( 1o X. { y } ) ) ) ) " ran ( 1o eval R ) ) = (/) ) |
| 23 |
9 22
|
eqtrid |
|- ( -. R e. CRing -> Q = (/) ) |
| 24 |
2 23
|
nsyl2 |
|- ( X e. Q -> R e. CRing ) |