Step |
Hyp |
Ref |
Expression |
1 |
|
opelxp |
|- ( <. S , 0 >. e. ( _V X. NN0 ) <-> ( S e. _V /\ 0 e. NN0 ) ) |
2 |
|
pfxval |
|- ( ( S e. _V /\ 0 e. NN0 ) -> ( S prefix 0 ) = ( S substr <. 0 , 0 >. ) ) |
3 |
|
swrd00 |
|- ( S substr <. 0 , 0 >. ) = (/) |
4 |
2 3
|
eqtrdi |
|- ( ( S e. _V /\ 0 e. NN0 ) -> ( S prefix 0 ) = (/) ) |
5 |
1 4
|
sylbi |
|- ( <. S , 0 >. e. ( _V X. NN0 ) -> ( S prefix 0 ) = (/) ) |
6 |
|
df-pfx |
|- prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) |
7 |
|
ovex |
|- ( s substr <. 0 , l >. ) e. _V |
8 |
6 7
|
dmmpo |
|- dom prefix = ( _V X. NN0 ) |
9 |
5 8
|
eleq2s |
|- ( <. S , 0 >. e. dom prefix -> ( S prefix 0 ) = (/) ) |
10 |
|
df-ov |
|- ( S prefix 0 ) = ( prefix ` <. S , 0 >. ) |
11 |
|
ndmfv |
|- ( -. <. S , 0 >. e. dom prefix -> ( prefix ` <. S , 0 >. ) = (/) ) |
12 |
10 11
|
eqtrid |
|- ( -. <. S , 0 >. e. dom prefix -> ( S prefix 0 ) = (/) ) |
13 |
9 12
|
pm2.61i |
|- ( S prefix 0 ) = (/) |