| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
| 2 |
|
simpll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( A e. Word V /\ B e. Word V ) ) |
| 3 |
|
simplrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> M e. ( 0 ... N ) ) |
| 4 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 5 |
|
elfznn0 |
|- ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> N e. NN0 ) |
| 6 |
5
|
adantr |
|- ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) -> N e. NN0 ) |
| 7 |
6
|
adantr |
|- ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N e. NN0 ) |
| 8 |
|
simplr |
|- ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> ( # ` A ) e. NN0 ) |
| 9 |
1
|
breq2i |
|- ( N <_ L <-> N <_ ( # ` A ) ) |
| 10 |
9
|
biimpi |
|- ( N <_ L -> N <_ ( # ` A ) ) |
| 11 |
10
|
adantl |
|- ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N <_ ( # ` A ) ) |
| 12 |
|
elfz2nn0 |
|- ( N e. ( 0 ... ( # ` A ) ) <-> ( N e. NN0 /\ ( # ` A ) e. NN0 /\ N <_ ( # ` A ) ) ) |
| 13 |
7 8 11 12
|
syl3anbrc |
|- ( ( ( N e. ( 0 ... ( L + ( # ` B ) ) ) /\ ( # ` A ) e. NN0 ) /\ N <_ L ) -> N e. ( 0 ... ( # ` A ) ) ) |
| 14 |
13
|
exp31 |
|- ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 15 |
14
|
adantl |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 16 |
4 15
|
syl5com |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 17 |
16
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) ) |
| 18 |
17
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( N <_ L -> N e. ( 0 ... ( # ` A ) ) ) ) |
| 19 |
18
|
imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> N e. ( 0 ... ( # ` A ) ) ) |
| 20 |
3 19
|
jca |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
| 21 |
|
swrdccatin1 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) ) |
| 22 |
2 20 21
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ N <_ L ) -> ( ( A ++ B ) substr <. M , N >. ) = ( A substr <. M , N >. ) ) |
| 23 |
|
simp1l |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( A e. Word V /\ B e. Word V ) ) |
| 24 |
1
|
eleq1i |
|- ( L e. NN0 <-> ( # ` A ) e. NN0 ) |
| 25 |
|
elfz2nn0 |
|- ( M e. ( 0 ... N ) <-> ( M e. NN0 /\ N e. NN0 /\ M <_ N ) ) |
| 26 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
| 27 |
26
|
adantl |
|- ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> L e. ZZ ) |
| 28 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 29 |
28
|
3ad2ant2 |
|- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> N e. ZZ ) |
| 30 |
29
|
adantr |
|- ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> N e. ZZ ) |
| 31 |
|
nn0z |
|- ( M e. NN0 -> M e. ZZ ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> M e. ZZ ) |
| 33 |
32
|
adantr |
|- ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> M e. ZZ ) |
| 34 |
27 30 33
|
3jca |
|- ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) ) |
| 35 |
34
|
adantr |
|- ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) ) |
| 36 |
|
simpl3 |
|- ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) -> M <_ N ) |
| 37 |
36
|
anim1ci |
|- ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> ( L <_ M /\ M <_ N ) ) |
| 38 |
|
elfz2 |
|- ( M e. ( L ... N ) <-> ( ( L e. ZZ /\ N e. ZZ /\ M e. ZZ ) /\ ( L <_ M /\ M <_ N ) ) ) |
| 39 |
35 37 38
|
sylanbrc |
|- ( ( ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) /\ L e. NN0 ) /\ L <_ M ) -> M e. ( L ... N ) ) |
| 40 |
39
|
exp31 |
|- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 41 |
25 40
|
sylbi |
|- ( M e. ( 0 ... N ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 42 |
41
|
adantr |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L e. NN0 -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 43 |
42
|
com12 |
|- ( L e. NN0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 44 |
24 43
|
sylbir |
|- ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 45 |
4 44
|
syl |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 46 |
45
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 47 |
46
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( L <_ M -> M e. ( L ... N ) ) ) |
| 48 |
47
|
a1d |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( L <_ M -> M e. ( L ... N ) ) ) ) |
| 49 |
48
|
3imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> M e. ( L ... N ) ) |
| 50 |
|
elfz2nn0 |
|- ( N e. ( 0 ... ( L + ( # ` B ) ) ) <-> ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) |
| 51 |
|
nn0z |
|- ( ( # ` A ) e. NN0 -> ( # ` A ) e. ZZ ) |
| 52 |
1 51
|
eqeltrid |
|- ( ( # ` A ) e. NN0 -> L e. ZZ ) |
| 53 |
52
|
adantr |
|- ( ( ( # ` A ) e. NN0 /\ -. N <_ L ) -> L e. ZZ ) |
| 54 |
53
|
adantl |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> L e. ZZ ) |
| 55 |
|
nn0z |
|- ( ( L + ( # ` B ) ) e. NN0 -> ( L + ( # ` B ) ) e. ZZ ) |
| 56 |
55
|
3ad2ant2 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( L + ( # ` B ) ) e. ZZ ) |
| 57 |
56
|
adantr |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L + ( # ` B ) ) e. ZZ ) |
| 58 |
28
|
3ad2ant1 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> N e. ZZ ) |
| 59 |
58
|
adantr |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N e. ZZ ) |
| 60 |
54 57 59
|
3jca |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) |
| 61 |
1
|
eqcomi |
|- ( # ` A ) = L |
| 62 |
61
|
eleq1i |
|- ( ( # ` A ) e. NN0 <-> L e. NN0 ) |
| 63 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 64 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
| 65 |
|
ltnle |
|- ( ( L e. RR /\ N e. RR ) -> ( L < N <-> -. N <_ L ) ) |
| 66 |
63 64 65
|
syl2anr |
|- ( ( N e. NN0 /\ L e. NN0 ) -> ( L < N <-> -. N <_ L ) ) |
| 67 |
66
|
bicomd |
|- ( ( N e. NN0 /\ L e. NN0 ) -> ( -. N <_ L <-> L < N ) ) |
| 68 |
|
ltle |
|- ( ( L e. RR /\ N e. RR ) -> ( L < N -> L <_ N ) ) |
| 69 |
63 64 68
|
syl2anr |
|- ( ( N e. NN0 /\ L e. NN0 ) -> ( L < N -> L <_ N ) ) |
| 70 |
67 69
|
sylbid |
|- ( ( N e. NN0 /\ L e. NN0 ) -> ( -. N <_ L -> L <_ N ) ) |
| 71 |
70
|
ex |
|- ( N e. NN0 -> ( L e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) |
| 72 |
62 71
|
biimtrid |
|- ( N e. NN0 -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) |
| 73 |
72
|
3ad2ant1 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> L <_ N ) ) ) |
| 74 |
73
|
imp32 |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> L <_ N ) |
| 75 |
|
simpl3 |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N <_ ( L + ( # ` B ) ) ) |
| 76 |
74 75
|
jca |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) |
| 77 |
|
elfz2 |
|- ( N e. ( L ... ( L + ( # ` B ) ) ) <-> ( ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) /\ ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) ) |
| 78 |
60 76 77
|
sylanbrc |
|- ( ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) /\ ( ( # ` A ) e. NN0 /\ -. N <_ L ) ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) |
| 79 |
78
|
exp32 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 80 |
50 79
|
sylbi |
|- ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 81 |
80
|
adantl |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 82 |
4 81
|
syl5com |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 83 |
82
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 84 |
83
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 85 |
84
|
a1dd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( L <_ M -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 86 |
85
|
3imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) |
| 87 |
49 86
|
jca |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 88 |
1
|
swrdccatin2 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( L ... N ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) ) |
| 89 |
23 87 88
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ L <_ M ) -> ( ( A ++ B ) substr <. M , N >. ) = ( B substr <. ( M - L ) , ( N - L ) >. ) ) |
| 90 |
|
simp1l |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( A e. Word V /\ B e. Word V ) ) |
| 91 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 92 |
91
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> M e. RR ) |
| 93 |
|
ltnle |
|- ( ( M e. RR /\ L e. RR ) -> ( M < L <-> -. L <_ M ) ) |
| 94 |
92 63 93
|
syl2anr |
|- ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < L <-> -. L <_ M ) ) |
| 95 |
94
|
bicomd |
|- ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( -. L <_ M <-> M < L ) ) |
| 96 |
|
simpll |
|- ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M e. NN0 ) |
| 97 |
|
simplr |
|- ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> L e. NN0 ) |
| 98 |
|
ltle |
|- ( ( M e. RR /\ L e. RR ) -> ( M < L -> M <_ L ) ) |
| 99 |
91 63 98
|
syl2an |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L -> M <_ L ) ) |
| 100 |
99
|
imp |
|- ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M <_ L ) |
| 101 |
|
elfz2nn0 |
|- ( M e. ( 0 ... L ) <-> ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) |
| 102 |
96 97 100 101
|
syl3anbrc |
|- ( ( ( M e. NN0 /\ L e. NN0 ) /\ M < L ) -> M e. ( 0 ... L ) ) |
| 103 |
102
|
exp31 |
|- ( M e. NN0 -> ( L e. NN0 -> ( M < L -> M e. ( 0 ... L ) ) ) ) |
| 104 |
103
|
adantr |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( L e. NN0 -> ( M < L -> M e. ( 0 ... L ) ) ) ) |
| 105 |
104
|
impcom |
|- ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( M < L -> M e. ( 0 ... L ) ) ) |
| 106 |
95 105
|
sylbid |
|- ( ( L e. NN0 /\ ( M e. NN0 /\ N e. NN0 ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) |
| 107 |
106
|
expcom |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 108 |
107
|
3adant3 |
|- ( ( M e. NN0 /\ N e. NN0 /\ M <_ N ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 109 |
25 108
|
sylbi |
|- ( M e. ( 0 ... N ) -> ( L e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 110 |
62 109
|
biimtrid |
|- ( M e. ( 0 ... N ) -> ( ( # ` A ) e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 111 |
110
|
adantr |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( # ` A ) e. NN0 -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 112 |
4 111
|
syl5com |
|- ( A e. Word V -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 113 |
112
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 114 |
113
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) |
| 115 |
114
|
a1d |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( -. L <_ M -> M e. ( 0 ... L ) ) ) ) |
| 116 |
115
|
3imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> M e. ( 0 ... L ) ) |
| 117 |
64
|
3ad2ant1 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> N e. RR ) |
| 118 |
65
|
bicomd |
|- ( ( L e. RR /\ N e. RR ) -> ( -. N <_ L <-> L < N ) ) |
| 119 |
63 117 118
|
syl2an |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( -. N <_ L <-> L < N ) ) |
| 120 |
26
|
adantr |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> L e. ZZ ) |
| 121 |
56
|
adantl |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L + ( # ` B ) ) e. ZZ ) |
| 122 |
58
|
adantl |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> N e. ZZ ) |
| 123 |
120 121 122
|
3jca |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) |
| 124 |
123
|
adantr |
|- ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> ( L e. ZZ /\ ( L + ( # ` B ) ) e. ZZ /\ N e. ZZ ) ) |
| 125 |
63 117 68
|
syl2an |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L < N -> L <_ N ) ) |
| 126 |
125
|
imp |
|- ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> L <_ N ) |
| 127 |
|
simplr3 |
|- ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> N <_ ( L + ( # ` B ) ) ) |
| 128 |
126 127
|
jca |
|- ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> ( L <_ N /\ N <_ ( L + ( # ` B ) ) ) ) |
| 129 |
124 128 77
|
sylanbrc |
|- ( ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) /\ L < N ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) |
| 130 |
129
|
ex |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( L < N -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 131 |
119 130
|
sylbid |
|- ( ( L e. NN0 /\ ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 132 |
131
|
ex |
|- ( L e. NN0 -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 133 |
62 132
|
sylbi |
|- ( ( # ` A ) e. NN0 -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 134 |
4 133
|
syl |
|- ( A e. Word V -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 135 |
134
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 136 |
135
|
com12 |
|- ( ( N e. NN0 /\ ( L + ( # ` B ) ) e. NN0 /\ N <_ ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 137 |
50 136
|
sylbi |
|- ( N e. ( 0 ... ( L + ( # ` B ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 138 |
137
|
adantl |
|- ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( A e. Word V /\ B e. Word V ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 139 |
138
|
impcom |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 140 |
139
|
a1dd |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( -. N <_ L -> ( -. L <_ M -> N e. ( L ... ( L + ( # ` B ) ) ) ) ) ) |
| 141 |
140
|
3imp |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> N e. ( L ... ( L + ( # ` B ) ) ) ) |
| 142 |
116 141
|
jca |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) |
| 143 |
1
|
pfxccatin12 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) |
| 144 |
90 142 143
|
sylc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) /\ -. N <_ L /\ -. L <_ M ) -> ( ( A ++ B ) substr <. M , N >. ) = ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) |
| 145 |
22 89 144
|
2if2 |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = if ( N <_ L , ( A substr <. M , N >. ) , if ( L <_ M , ( B substr <. ( M - L ) , ( N - L ) >. ) , ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) ) |
| 146 |
145
|
ex |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... N ) /\ N e. ( 0 ... ( L + ( # ` B ) ) ) ) -> ( ( A ++ B ) substr <. M , N >. ) = if ( N <_ L , ( A substr <. M , N >. ) , if ( L <_ M , ( B substr <. ( M - L ) , ( N - L ) >. ) , ( ( A substr <. M , L >. ) ++ ( B prefix ( N - L ) ) ) ) ) ) ) |