| Step |
Hyp |
Ref |
Expression |
| 1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
| 2 |
|
simpll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
| 3 |
|
elfzo0 |
|- ( K e. ( 0 ..^ ( L - M ) ) <-> ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) |
| 4 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
| 5 |
|
elfz2nn0 |
|- ( M e. ( 0 ... L ) <-> ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) |
| 6 |
|
nn0addcl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K + M ) e. NN0 ) |
| 7 |
6
|
ex |
|- ( K e. NN0 -> ( M e. NN0 -> ( K + M ) e. NN0 ) ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( M e. NN0 -> ( K + M ) e. NN0 ) ) |
| 9 |
8
|
com12 |
|- ( M e. NN0 -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( K + M ) e. NN0 ) ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( K + M ) e. NN0 ) ) |
| 11 |
10
|
imp |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( K + M ) e. NN0 ) |
| 12 |
|
elnnz |
|- ( ( L - M ) e. NN <-> ( ( L - M ) e. ZZ /\ 0 < ( L - M ) ) ) |
| 13 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 14 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 15 |
|
posdif |
|- ( ( M e. RR /\ L e. RR ) -> ( M < L <-> 0 < ( L - M ) ) ) |
| 16 |
13 14 15
|
syl2an |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L <-> 0 < ( L - M ) ) ) |
| 17 |
|
elnn0z |
|- ( M e. NN0 <-> ( M e. ZZ /\ 0 <_ M ) ) |
| 18 |
|
0re |
|- 0 e. RR |
| 19 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
| 20 |
|
lelttr |
|- ( ( 0 e. RR /\ M e. RR /\ L e. RR ) -> ( ( 0 <_ M /\ M < L ) -> 0 < L ) ) |
| 21 |
18 19 14 20
|
mp3an3an |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( ( 0 <_ M /\ M < L ) -> 0 < L ) ) |
| 22 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
| 23 |
22
|
anim1i |
|- ( ( L e. NN0 /\ 0 < L ) -> ( L e. ZZ /\ 0 < L ) ) |
| 24 |
|
elnnz |
|- ( L e. NN <-> ( L e. ZZ /\ 0 < L ) ) |
| 25 |
23 24
|
sylibr |
|- ( ( L e. NN0 /\ 0 < L ) -> L e. NN ) |
| 26 |
25
|
ex |
|- ( L e. NN0 -> ( 0 < L -> L e. NN ) ) |
| 27 |
26
|
adantl |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( 0 < L -> L e. NN ) ) |
| 28 |
21 27
|
syld |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( ( 0 <_ M /\ M < L ) -> L e. NN ) ) |
| 29 |
28
|
expd |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( 0 <_ M -> ( M < L -> L e. NN ) ) ) |
| 30 |
29
|
impancom |
|- ( ( M e. ZZ /\ 0 <_ M ) -> ( L e. NN0 -> ( M < L -> L e. NN ) ) ) |
| 31 |
17 30
|
sylbi |
|- ( M e. NN0 -> ( L e. NN0 -> ( M < L -> L e. NN ) ) ) |
| 32 |
31
|
imp |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L -> L e. NN ) ) |
| 33 |
16 32
|
sylbird |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( 0 < ( L - M ) -> L e. NN ) ) |
| 34 |
33
|
com12 |
|- ( 0 < ( L - M ) -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
| 35 |
12 34
|
simplbiim |
|- ( ( L - M ) e. NN -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
| 36 |
35
|
3ad2ant2 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
| 37 |
36
|
com12 |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> L e. NN ) ) |
| 38 |
37
|
3adant3 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> L e. NN ) ) |
| 39 |
38
|
imp |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> L e. NN ) |
| 40 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
| 41 |
40
|
adantr |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> K e. RR ) |
| 42 |
13
|
3ad2ant1 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> M e. RR ) |
| 43 |
42
|
adantl |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> M e. RR ) |
| 44 |
14
|
3ad2ant2 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> L e. RR ) |
| 45 |
44
|
adantl |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> L e. RR ) |
| 46 |
41 43 45
|
ltaddsubd |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> ( ( K + M ) < L <-> K < ( L - M ) ) ) |
| 47 |
46
|
exbiri |
|- ( K e. NN0 -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K < ( L - M ) -> ( K + M ) < L ) ) ) |
| 48 |
47
|
com23 |
|- ( K e. NN0 -> ( K < ( L - M ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) ) |
| 49 |
48
|
imp |
|- ( ( K e. NN0 /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) |
| 50 |
49
|
3adant2 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) |
| 51 |
50
|
impcom |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( K + M ) < L ) |
| 52 |
11 39 51
|
3jca |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) |
| 53 |
52
|
ex |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
| 54 |
53
|
a1d |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
| 55 |
5 54
|
sylbi |
|- ( M e. ( 0 ... L ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
| 56 |
55
|
imp |
|- ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
| 57 |
56
|
2a1i |
|- ( ( # ` A ) = L -> ( L e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) ) |
| 58 |
|
eleq1 |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN0 <-> L e. NN0 ) ) |
| 59 |
|
eleq1 |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN <-> L e. NN ) ) |
| 60 |
|
breq2 |
|- ( ( # ` A ) = L -> ( ( K + M ) < ( # ` A ) <-> ( K + M ) < L ) ) |
| 61 |
59 60
|
3anbi23d |
|- ( ( # ` A ) = L -> ( ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) <-> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
| 62 |
61
|
imbi2d |
|- ( ( # ` A ) = L -> ( ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) <-> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
| 63 |
62
|
imbi2d |
|- ( ( # ` A ) = L -> ( ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) <-> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) ) |
| 64 |
57 58 63
|
3imtr4d |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) ) |
| 65 |
64
|
eqcoms |
|- ( L = ( # ` A ) -> ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) ) |
| 66 |
1 4 65
|
mpsyl |
|- ( A e. Word V -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) |
| 67 |
66
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) |
| 68 |
67
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
| 69 |
68
|
com12 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
| 70 |
3 69
|
sylbi |
|- ( K e. ( 0 ..^ ( L - M ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
| 71 |
70
|
adantl |
|- ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
| 72 |
71
|
impcom |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) |
| 73 |
|
elfzo0 |
|- ( ( K + M ) e. ( 0 ..^ ( # ` A ) ) <-> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) |
| 74 |
72 73
|
sylibr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) |
| 75 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) ) |
| 76 |
2 74 75
|
sylanbrc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) ) |
| 77 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( K + M ) ) = ( A ` ( K + M ) ) ) |
| 78 |
76 77
|
syl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( A ++ B ) ` ( K + M ) ) = ( A ` ( K + M ) ) ) |
| 79 |
1
|
pfxccatin12lem2c |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
| 80 |
|
simpl |
|- ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> K e. ( 0 ..^ ( N - M ) ) ) |
| 81 |
|
swrdfv |
|- ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ K e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A ++ B ) ` ( K + M ) ) ) |
| 82 |
79 80 81
|
syl2an |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A ++ B ) ` ( K + M ) ) ) |
| 83 |
|
simplll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> A e. Word V ) |
| 84 |
|
simplrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> M e. ( 0 ... L ) ) |
| 85 |
1
|
eleq1i |
|- ( L e. NN0 <-> ( # ` A ) e. NN0 ) |
| 86 |
|
elnn0uz |
|- ( L e. NN0 <-> L e. ( ZZ>= ` 0 ) ) |
| 87 |
|
eluzfz2 |
|- ( L e. ( ZZ>= ` 0 ) -> L e. ( 0 ... L ) ) |
| 88 |
86 87
|
sylbi |
|- ( L e. NN0 -> L e. ( 0 ... L ) ) |
| 89 |
1
|
oveq2i |
|- ( 0 ... L ) = ( 0 ... ( # ` A ) ) |
| 90 |
88 89
|
eleqtrdi |
|- ( L e. NN0 -> L e. ( 0 ... ( # ` A ) ) ) |
| 91 |
85 90
|
sylbir |
|- ( ( # ` A ) e. NN0 -> L e. ( 0 ... ( # ` A ) ) ) |
| 92 |
4 91
|
syl |
|- ( A e. Word V -> L e. ( 0 ... ( # ` A ) ) ) |
| 93 |
92
|
ad3antrrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> L e. ( 0 ... ( # ` A ) ) ) |
| 94 |
|
simprr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> K e. ( 0 ..^ ( L - M ) ) ) |
| 95 |
|
swrdfv |
|- ( ( ( A e. Word V /\ M e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` A ) ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( A substr <. M , L >. ) ` K ) = ( A ` ( K + M ) ) ) |
| 96 |
83 84 93 94 95
|
syl31anc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( A substr <. M , L >. ) ` K ) = ( A ` ( K + M ) ) ) |
| 97 |
78 82 96
|
3eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A substr <. M , L >. ) ` K ) ) |
| 98 |
97
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A substr <. M , L >. ) ` K ) ) ) |