Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
2 |
|
simpll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( A e. Word V /\ B e. Word V ) ) |
3 |
|
elfzo0 |
|- ( K e. ( 0 ..^ ( L - M ) ) <-> ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) |
4 |
|
lencl |
|- ( A e. Word V -> ( # ` A ) e. NN0 ) |
5 |
|
elfz2nn0 |
|- ( M e. ( 0 ... L ) <-> ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) |
6 |
|
nn0addcl |
|- ( ( K e. NN0 /\ M e. NN0 ) -> ( K + M ) e. NN0 ) |
7 |
6
|
ex |
|- ( K e. NN0 -> ( M e. NN0 -> ( K + M ) e. NN0 ) ) |
8 |
7
|
3ad2ant1 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( M e. NN0 -> ( K + M ) e. NN0 ) ) |
9 |
8
|
com12 |
|- ( M e. NN0 -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( K + M ) e. NN0 ) ) |
10 |
9
|
3ad2ant1 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( K + M ) e. NN0 ) ) |
11 |
10
|
imp |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( K + M ) e. NN0 ) |
12 |
|
elnnz |
|- ( ( L - M ) e. NN <-> ( ( L - M ) e. ZZ /\ 0 < ( L - M ) ) ) |
13 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
14 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
15 |
|
posdif |
|- ( ( M e. RR /\ L e. RR ) -> ( M < L <-> 0 < ( L - M ) ) ) |
16 |
13 14 15
|
syl2an |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L <-> 0 < ( L - M ) ) ) |
17 |
|
elnn0z |
|- ( M e. NN0 <-> ( M e. ZZ /\ 0 <_ M ) ) |
18 |
|
0re |
|- 0 e. RR |
19 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
20 |
|
lelttr |
|- ( ( 0 e. RR /\ M e. RR /\ L e. RR ) -> ( ( 0 <_ M /\ M < L ) -> 0 < L ) ) |
21 |
18 19 14 20
|
mp3an3an |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( ( 0 <_ M /\ M < L ) -> 0 < L ) ) |
22 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
23 |
22
|
anim1i |
|- ( ( L e. NN0 /\ 0 < L ) -> ( L e. ZZ /\ 0 < L ) ) |
24 |
|
elnnz |
|- ( L e. NN <-> ( L e. ZZ /\ 0 < L ) ) |
25 |
23 24
|
sylibr |
|- ( ( L e. NN0 /\ 0 < L ) -> L e. NN ) |
26 |
25
|
ex |
|- ( L e. NN0 -> ( 0 < L -> L e. NN ) ) |
27 |
26
|
adantl |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( 0 < L -> L e. NN ) ) |
28 |
21 27
|
syld |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( ( 0 <_ M /\ M < L ) -> L e. NN ) ) |
29 |
28
|
expd |
|- ( ( M e. ZZ /\ L e. NN0 ) -> ( 0 <_ M -> ( M < L -> L e. NN ) ) ) |
30 |
29
|
impancom |
|- ( ( M e. ZZ /\ 0 <_ M ) -> ( L e. NN0 -> ( M < L -> L e. NN ) ) ) |
31 |
17 30
|
sylbi |
|- ( M e. NN0 -> ( L e. NN0 -> ( M < L -> L e. NN ) ) ) |
32 |
31
|
imp |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( M < L -> L e. NN ) ) |
33 |
16 32
|
sylbird |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( 0 < ( L - M ) -> L e. NN ) ) |
34 |
33
|
com12 |
|- ( 0 < ( L - M ) -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
35 |
12 34
|
simplbiim |
|- ( ( L - M ) e. NN -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
36 |
35
|
3ad2ant2 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 ) -> L e. NN ) ) |
37 |
36
|
com12 |
|- ( ( M e. NN0 /\ L e. NN0 ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> L e. NN ) ) |
38 |
37
|
3adant3 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> L e. NN ) ) |
39 |
38
|
imp |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> L e. NN ) |
40 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
41 |
40
|
adantr |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> K e. RR ) |
42 |
13
|
3ad2ant1 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> M e. RR ) |
43 |
42
|
adantl |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> M e. RR ) |
44 |
14
|
3ad2ant2 |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> L e. RR ) |
45 |
44
|
adantl |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> L e. RR ) |
46 |
41 43 45
|
ltaddsubd |
|- ( ( K e. NN0 /\ ( M e. NN0 /\ L e. NN0 /\ M <_ L ) ) -> ( ( K + M ) < L <-> K < ( L - M ) ) ) |
47 |
46
|
exbiri |
|- ( K e. NN0 -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K < ( L - M ) -> ( K + M ) < L ) ) ) |
48 |
47
|
com23 |
|- ( K e. NN0 -> ( K < ( L - M ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) ) |
49 |
48
|
imp |
|- ( ( K e. NN0 /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) |
50 |
49
|
3adant2 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( K + M ) < L ) ) |
51 |
50
|
impcom |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( K + M ) < L ) |
52 |
11 39 51
|
3jca |
|- ( ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) /\ ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) |
53 |
52
|
ex |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
54 |
53
|
a1d |
|- ( ( M e. NN0 /\ L e. NN0 /\ M <_ L ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
55 |
5 54
|
sylbi |
|- ( M e. ( 0 ... L ) -> ( N e. ( L ... ( L + ( # ` B ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
56 |
55
|
imp |
|- ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
57 |
56
|
2a1i |
|- ( ( # ` A ) = L -> ( L e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) ) |
58 |
|
eleq1 |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN0 <-> L e. NN0 ) ) |
59 |
|
eleq1 |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN <-> L e. NN ) ) |
60 |
|
breq2 |
|- ( ( # ` A ) = L -> ( ( K + M ) < ( # ` A ) <-> ( K + M ) < L ) ) |
61 |
59 60
|
3anbi23d |
|- ( ( # ` A ) = L -> ( ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) <-> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) |
62 |
61
|
imbi2d |
|- ( ( # ` A ) = L -> ( ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) <-> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) |
63 |
62
|
imbi2d |
|- ( ( # ` A ) = L -> ( ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) <-> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ L e. NN /\ ( K + M ) < L ) ) ) ) ) |
64 |
57 58 63
|
3imtr4d |
|- ( ( # ` A ) = L -> ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) ) |
65 |
64
|
eqcoms |
|- ( L = ( # ` A ) -> ( ( # ` A ) e. NN0 -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) ) |
66 |
1 4 65
|
mpsyl |
|- ( A e. Word V -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) |
67 |
66
|
adantr |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) ) |
68 |
67
|
imp |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
69 |
68
|
com12 |
|- ( ( K e. NN0 /\ ( L - M ) e. NN /\ K < ( L - M ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
70 |
3 69
|
sylbi |
|- ( K e. ( 0 ..^ ( L - M ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
71 |
70
|
adantl |
|- ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) ) |
72 |
71
|
impcom |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) |
73 |
|
elfzo0 |
|- ( ( K + M ) e. ( 0 ..^ ( # ` A ) ) <-> ( ( K + M ) e. NN0 /\ ( # ` A ) e. NN /\ ( K + M ) < ( # ` A ) ) ) |
74 |
72 73
|
sylibr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) |
75 |
|
df-3an |
|- ( ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) <-> ( ( A e. Word V /\ B e. Word V ) /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) ) |
76 |
2 74 75
|
sylanbrc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) ) |
77 |
|
ccatval1 |
|- ( ( A e. Word V /\ B e. Word V /\ ( K + M ) e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` ( K + M ) ) = ( A ` ( K + M ) ) ) |
78 |
76 77
|
syl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( A ++ B ) ` ( K + M ) ) = ( A ` ( K + M ) ) ) |
79 |
1
|
pfxccatin12lem2c |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) ) |
80 |
|
simpl |
|- ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> K e. ( 0 ..^ ( N - M ) ) ) |
81 |
|
swrdfv |
|- ( ( ( ( A ++ B ) e. Word V /\ M e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` ( A ++ B ) ) ) ) /\ K e. ( 0 ..^ ( N - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A ++ B ) ` ( K + M ) ) ) |
82 |
79 80 81
|
syl2an |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A ++ B ) ` ( K + M ) ) ) |
83 |
|
simplll |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> A e. Word V ) |
84 |
|
simplrl |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> M e. ( 0 ... L ) ) |
85 |
1
|
eleq1i |
|- ( L e. NN0 <-> ( # ` A ) e. NN0 ) |
86 |
|
elnn0uz |
|- ( L e. NN0 <-> L e. ( ZZ>= ` 0 ) ) |
87 |
|
eluzfz2 |
|- ( L e. ( ZZ>= ` 0 ) -> L e. ( 0 ... L ) ) |
88 |
86 87
|
sylbi |
|- ( L e. NN0 -> L e. ( 0 ... L ) ) |
89 |
1
|
oveq2i |
|- ( 0 ... L ) = ( 0 ... ( # ` A ) ) |
90 |
88 89
|
eleqtrdi |
|- ( L e. NN0 -> L e. ( 0 ... ( # ` A ) ) ) |
91 |
85 90
|
sylbir |
|- ( ( # ` A ) e. NN0 -> L e. ( 0 ... ( # ` A ) ) ) |
92 |
4 91
|
syl |
|- ( A e. Word V -> L e. ( 0 ... ( # ` A ) ) ) |
93 |
92
|
ad3antrrr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> L e. ( 0 ... ( # ` A ) ) ) |
94 |
|
simprr |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> K e. ( 0 ..^ ( L - M ) ) ) |
95 |
|
swrdfv |
|- ( ( ( A e. Word V /\ M e. ( 0 ... L ) /\ L e. ( 0 ... ( # ` A ) ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( A substr <. M , L >. ) ` K ) = ( A ` ( K + M ) ) ) |
96 |
83 84 93 94 95
|
syl31anc |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( A substr <. M , L >. ) ` K ) = ( A ` ( K + M ) ) ) |
97 |
78 82 96
|
3eqtr4d |
|- ( ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) /\ ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A substr <. M , L >. ) ` K ) ) |
98 |
97
|
ex |
|- ( ( ( A e. Word V /\ B e. Word V ) /\ ( M e. ( 0 ... L ) /\ N e. ( L ... ( L + ( # ` B ) ) ) ) ) -> ( ( K e. ( 0 ..^ ( N - M ) ) /\ K e. ( 0 ..^ ( L - M ) ) ) -> ( ( ( A ++ B ) substr <. M , N >. ) ` K ) = ( ( A substr <. M , L >. ) ` K ) ) ) |