Step |
Hyp |
Ref |
Expression |
1 |
|
swrdccatin2.l |
|- L = ( # ` A ) |
2 |
|
3simpa |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A e. Word V /\ B e. Word V ) ) |
3 |
|
elfznn0 |
|- ( N e. ( 0 ... L ) -> N e. NN0 ) |
4 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
5 |
3 4
|
syl |
|- ( N e. ( 0 ... L ) -> 0 e. ( 0 ... N ) ) |
6 |
1
|
oveq2i |
|- ( 0 ... L ) = ( 0 ... ( # ` A ) ) |
7 |
6
|
eleq2i |
|- ( N e. ( 0 ... L ) <-> N e. ( 0 ... ( # ` A ) ) ) |
8 |
7
|
biimpi |
|- ( N e. ( 0 ... L ) -> N e. ( 0 ... ( # ` A ) ) ) |
9 |
5 8
|
jca |
|- ( N e. ( 0 ... L ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
10 |
9
|
3ad2ant3 |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) ) |
11 |
|
swrdccatin1 |
|- ( ( A e. Word V /\ B e. Word V ) -> ( ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` A ) ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( A substr <. 0 , N >. ) ) ) |
12 |
2 10 11
|
sylc |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) substr <. 0 , N >. ) = ( A substr <. 0 , N >. ) ) |
13 |
|
ccatcl |
|- ( ( A e. Word V /\ B e. Word V ) -> ( A ++ B ) e. Word V ) |
14 |
13
|
3adant3 |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A ++ B ) e. Word V ) |
15 |
3
|
3ad2ant3 |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> N e. NN0 ) |
16 |
14 15
|
jca |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) e. Word V /\ N e. NN0 ) ) |
17 |
|
pfxval |
|- ( ( ( A ++ B ) e. Word V /\ N e. NN0 ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) |
18 |
16 17
|
syl |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) prefix N ) = ( ( A ++ B ) substr <. 0 , N >. ) ) |
19 |
|
pfxval |
|- ( ( A e. Word V /\ N e. NN0 ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) |
20 |
3 19
|
sylan2 |
|- ( ( A e. Word V /\ N e. ( 0 ... L ) ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) |
21 |
20
|
3adant2 |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( A prefix N ) = ( A substr <. 0 , N >. ) ) |
22 |
12 18 21
|
3eqtr4d |
|- ( ( A e. Word V /\ B e. Word V /\ N e. ( 0 ... L ) ) -> ( ( A ++ B ) prefix N ) = ( A prefix N ) ) |