| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eleq1 | 
							 |-  ( ( S prefix L ) = (/) -> ( ( S prefix L ) e. Word A <-> (/) e. Word A ) )  | 
						
						
							| 2 | 
							
								
							 | 
							n0 | 
							 |-  ( ( S prefix L ) =/= (/) <-> E. x x e. ( S prefix L ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-pfx | 
							 |-  prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							elmpocl2 | 
							 |-  ( x e. ( S prefix L ) -> L e. NN0 )  | 
						
						
							| 5 | 
							
								4
							 | 
							exlimiv | 
							 |-  ( E. x x e. ( S prefix L ) -> L e. NN0 )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							sylbi | 
							 |-  ( ( S prefix L ) =/= (/) -> L e. NN0 )  | 
						
						
							| 7 | 
							
								
							 | 
							pfxval | 
							 |-  ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) )  | 
						
						
							| 8 | 
							
								
							 | 
							swrdcl | 
							 |-  ( S e. Word A -> ( S substr <. 0 , L >. ) e. Word A )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( S e. Word A /\ L e. NN0 ) -> ( S substr <. 0 , L >. ) e. Word A )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							eqeltrd | 
							 |-  ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) e. Word A )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							sylan2 | 
							 |-  ( ( S e. Word A /\ ( S prefix L ) =/= (/) ) -> ( S prefix L ) e. Word A )  | 
						
						
							| 12 | 
							
								
							 | 
							wrd0 | 
							 |-  (/) e. Word A  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( S e. Word A -> (/) e. Word A )  | 
						
						
							| 14 | 
							
								1 11 13
							 | 
							pm2.61ne | 
							 |-  ( S e. Word A -> ( S prefix L ) e. Word A )  |