Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( ( S prefix L ) = (/) -> ( ( S prefix L ) e. Word A <-> (/) e. Word A ) ) |
2 |
|
n0 |
|- ( ( S prefix L ) =/= (/) <-> E. x x e. ( S prefix L ) ) |
3 |
|
df-pfx |
|- prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) ) |
4 |
3
|
elmpocl2 |
|- ( x e. ( S prefix L ) -> L e. NN0 ) |
5 |
4
|
exlimiv |
|- ( E. x x e. ( S prefix L ) -> L e. NN0 ) |
6 |
2 5
|
sylbi |
|- ( ( S prefix L ) =/= (/) -> L e. NN0 ) |
7 |
|
pfxval |
|- ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) = ( S substr <. 0 , L >. ) ) |
8 |
|
swrdcl |
|- ( S e. Word A -> ( S substr <. 0 , L >. ) e. Word A ) |
9 |
8
|
adantr |
|- ( ( S e. Word A /\ L e. NN0 ) -> ( S substr <. 0 , L >. ) e. Word A ) |
10 |
7 9
|
eqeltrd |
|- ( ( S e. Word A /\ L e. NN0 ) -> ( S prefix L ) e. Word A ) |
11 |
6 10
|
sylan2 |
|- ( ( S e. Word A /\ ( S prefix L ) =/= (/) ) -> ( S prefix L ) e. Word A ) |
12 |
|
wrd0 |
|- (/) e. Word A |
13 |
12
|
a1i |
|- ( S e. Word A -> (/) e. Word A ) |
14 |
1 11 13
|
pm2.61ne |
|- ( S e. Word A -> ( S prefix L ) e. Word A ) |