Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|- ( N e. ( 0 ... ( # ` W ) ) -> N e. NN0 ) |
2 |
1
|
3ad2ant2 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> N e. NN0 ) |
3 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
4 |
2 3
|
syl |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> 0 e. ( 0 ... N ) ) |
5 |
|
simp2 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> N e. ( 0 ... ( # ` W ) ) ) |
6 |
4 5
|
jca |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
7 |
|
swrdco |
|- ( ( W e. Word A /\ ( 0 e. ( 0 ... N ) /\ N e. ( 0 ... ( # ` W ) ) ) /\ F : A --> B ) -> ( F o. ( W substr <. 0 , N >. ) ) = ( ( F o. W ) substr <. 0 , N >. ) ) |
8 |
6 7
|
syld3an2 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W substr <. 0 , N >. ) ) = ( ( F o. W ) substr <. 0 , N >. ) ) |
9 |
|
pfxval |
|- ( ( W e. Word A /\ N e. NN0 ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
10 |
1 9
|
sylan2 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
11 |
10
|
coeq2d |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) ) -> ( F o. ( W prefix N ) ) = ( F o. ( W substr <. 0 , N >. ) ) ) |
12 |
11
|
3adant3 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W prefix N ) ) = ( F o. ( W substr <. 0 , N >. ) ) ) |
13 |
|
ffun |
|- ( F : A --> B -> Fun F ) |
14 |
13
|
anim2i |
|- ( ( W e. Word A /\ F : A --> B ) -> ( W e. Word A /\ Fun F ) ) |
15 |
14
|
ancomd |
|- ( ( W e. Word A /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) |
16 |
15
|
3adant2 |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) |
17 |
|
cofunexg |
|- ( ( Fun F /\ W e. Word A ) -> ( F o. W ) e. _V ) |
18 |
16 17
|
syl |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. W ) e. _V ) |
19 |
18 2
|
jca |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( ( F o. W ) e. _V /\ N e. NN0 ) ) |
20 |
|
pfxval |
|- ( ( ( F o. W ) e. _V /\ N e. NN0 ) -> ( ( F o. W ) prefix N ) = ( ( F o. W ) substr <. 0 , N >. ) ) |
21 |
19 20
|
syl |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( ( F o. W ) prefix N ) = ( ( F o. W ) substr <. 0 , N >. ) ) |
22 |
8 12 21
|
3eqtr4d |
|- ( ( W e. Word A /\ N e. ( 0 ... ( # ` W ) ) /\ F : A --> B ) -> ( F o. ( W prefix N ) ) = ( ( F o. W ) prefix N ) ) |