| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pfxmpt |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) = ( x e. ( 0 ..^ L ) |-> ( W ` x ) ) ) |
| 2 |
|
simpll |
|- ( ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) /\ x e. ( 0 ..^ L ) ) -> W e. Word V ) |
| 3 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` L ) ) |
| 4 |
3
|
adantl |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` W ) e. ( ZZ>= ` L ) ) |
| 5 |
|
fzoss2 |
|- ( ( # ` W ) e. ( ZZ>= ` L ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 6 |
4 5
|
syl |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` W ) ) ) |
| 7 |
6
|
sselda |
|- ( ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) /\ x e. ( 0 ..^ L ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
| 8 |
|
wrdsymbcl |
|- ( ( W e. Word V /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. V ) |
| 9 |
2 7 8
|
syl2anc |
|- ( ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) /\ x e. ( 0 ..^ L ) ) -> ( W ` x ) e. V ) |
| 10 |
1 9
|
fmpt3d |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) : ( 0 ..^ L ) --> V ) |