| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxcl |  |-  ( W e. Word V -> ( W prefix L ) e. Word V ) | 
						
							| 2 | 1 | adantr |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( W prefix L ) e. Word V ) | 
						
							| 3 |  | lsw |  |-  ( ( W prefix L ) e. Word V -> ( lastS ` ( W prefix L ) ) = ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix L ) ) = ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) ) | 
						
							| 5 |  | fz1ssfz0 |  |-  ( 1 ... ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) | 
						
							| 6 | 5 | sseli |  |-  ( L e. ( 1 ... ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) | 
						
							| 7 |  | pfxlen |  |-  ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix L ) ) = L ) | 
						
							| 8 | 6 7 | sylan2 |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( # ` ( W prefix L ) ) = L ) | 
						
							| 9 | 8 | fvoveq1d |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) = ( ( W prefix L ) ` ( L - 1 ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) | 
						
							| 11 | 6 | adantl |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> L e. ( 0 ... ( # ` W ) ) ) | 
						
							| 12 |  | elfznn |  |-  ( L e. ( 1 ... ( # ` W ) ) -> L e. NN ) | 
						
							| 13 |  | fzo0end |  |-  ( L e. NN -> ( L - 1 ) e. ( 0 ..^ L ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( L e. ( 1 ... ( # ` W ) ) -> ( L - 1 ) e. ( 0 ..^ L ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( L - 1 ) e. ( 0 ..^ L ) ) | 
						
							| 16 |  | pfxfv |  |-  ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ ( L - 1 ) e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` ( L - 1 ) ) = ( W ` ( L - 1 ) ) ) | 
						
							| 17 | 10 11 15 16 | syl3anc |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix L ) ` ( L - 1 ) ) = ( W ` ( L - 1 ) ) ) | 
						
							| 18 | 4 9 17 | 3eqtrd |  |-  ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix L ) ) = ( W ` ( L - 1 ) ) ) |