Step |
Hyp |
Ref |
Expression |
1 |
|
pfxcl |
|- ( W e. Word V -> ( W prefix L ) e. Word V ) |
2 |
1
|
adantr |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( W prefix L ) e. Word V ) |
3 |
|
lsw |
|- ( ( W prefix L ) e. Word V -> ( lastS ` ( W prefix L ) ) = ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) ) |
4 |
2 3
|
syl |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix L ) ) = ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) ) |
5 |
|
fz1ssfz0 |
|- ( 1 ... ( # ` W ) ) C_ ( 0 ... ( # ` W ) ) |
6 |
5
|
sseli |
|- ( L e. ( 1 ... ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
7 |
|
pfxlen |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix L ) ) = L ) |
8 |
6 7
|
sylan2 |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( # ` ( W prefix L ) ) = L ) |
9 |
8
|
fvoveq1d |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix L ) ` ( ( # ` ( W prefix L ) ) - 1 ) ) = ( ( W prefix L ) ` ( L - 1 ) ) ) |
10 |
|
simpl |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> W e. Word V ) |
11 |
6
|
adantl |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
12 |
|
elfznn |
|- ( L e. ( 1 ... ( # ` W ) ) -> L e. NN ) |
13 |
|
fzo0end |
|- ( L e. NN -> ( L - 1 ) e. ( 0 ..^ L ) ) |
14 |
12 13
|
syl |
|- ( L e. ( 1 ... ( # ` W ) ) -> ( L - 1 ) e. ( 0 ..^ L ) ) |
15 |
14
|
adantl |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( L - 1 ) e. ( 0 ..^ L ) ) |
16 |
|
pfxfv |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) /\ ( L - 1 ) e. ( 0 ..^ L ) ) -> ( ( W prefix L ) ` ( L - 1 ) ) = ( W ` ( L - 1 ) ) ) |
17 |
10 11 15 16
|
syl3anc |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix L ) ` ( L - 1 ) ) = ( W ` ( L - 1 ) ) ) |
18 |
4 9 17
|
3eqtrd |
|- ( ( W e. Word V /\ L e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix L ) ) = ( W ` ( L - 1 ) ) ) |