Step |
Hyp |
Ref |
Expression |
1 |
|
pfxfn |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) Fn ( 0 ..^ L ) ) |
2 |
|
hashfn |
|- ( ( S prefix L ) Fn ( 0 ..^ L ) -> ( # ` ( S prefix L ) ) = ( # ` ( 0 ..^ L ) ) ) |
3 |
1 2
|
syl |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix L ) ) = ( # ` ( 0 ..^ L ) ) ) |
4 |
|
elfznn0 |
|- ( L e. ( 0 ... ( # ` S ) ) -> L e. NN0 ) |
5 |
4
|
adantl |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> L e. NN0 ) |
6 |
|
hashfzo0 |
|- ( L e. NN0 -> ( # ` ( 0 ..^ L ) ) = L ) |
7 |
5 6
|
syl |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( 0 ..^ L ) ) = L ) |
8 |
3 7
|
eqtrd |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` ( S prefix L ) ) = L ) |