Step |
Hyp |
Ref |
Expression |
1 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ L ) <-> L e. NN ) |
2 |
|
ne0i |
|- ( 0 e. ( 0 ..^ L ) -> ( 0 ..^ L ) =/= (/) ) |
3 |
1 2
|
sylbir |
|- ( L e. NN -> ( 0 ..^ L ) =/= (/) ) |
4 |
3
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( 0 ..^ L ) =/= (/) ) |
5 |
|
simp1 |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> W e. Word V ) |
6 |
|
nnnn0 |
|- ( L e. NN -> L e. NN0 ) |
7 |
6
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> L e. NN0 ) |
8 |
|
lencl |
|- ( W e. Word V -> ( # ` W ) e. NN0 ) |
9 |
8
|
3ad2ant1 |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( # ` W ) e. NN0 ) |
10 |
|
simp3 |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> L <_ ( # ` W ) ) |
11 |
|
elfz2nn0 |
|- ( L e. ( 0 ... ( # ` W ) ) <-> ( L e. NN0 /\ ( # ` W ) e. NN0 /\ L <_ ( # ` W ) ) ) |
12 |
7 9 10 11
|
syl3anbrc |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> L e. ( 0 ... ( # ` W ) ) ) |
13 |
|
pfxf |
|- ( ( W e. Word V /\ L e. ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) : ( 0 ..^ L ) --> V ) |
14 |
5 12 13
|
syl2anc |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( W prefix L ) : ( 0 ..^ L ) --> V ) |
15 |
|
f0dom0 |
|- ( ( W prefix L ) : ( 0 ..^ L ) --> V -> ( ( 0 ..^ L ) = (/) <-> ( W prefix L ) = (/) ) ) |
16 |
15
|
bicomd |
|- ( ( W prefix L ) : ( 0 ..^ L ) --> V -> ( ( W prefix L ) = (/) <-> ( 0 ..^ L ) = (/) ) ) |
17 |
14 16
|
syl |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( ( W prefix L ) = (/) <-> ( 0 ..^ L ) = (/) ) ) |
18 |
17
|
necon3bid |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( ( W prefix L ) =/= (/) <-> ( 0 ..^ L ) =/= (/) ) ) |
19 |
4 18
|
mpbird |
|- ( ( W e. Word V /\ L e. NN /\ L <_ ( # ` W ) ) -> ( W prefix L ) =/= (/) ) |