Step |
Hyp |
Ref |
Expression |
1 |
|
pfxval |
|- ( ( W e. Word V /\ L e. NN0 ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
2 |
1
|
3adant3 |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
3 |
|
simp1 |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> W e. Word V ) |
4 |
|
0zd |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> 0 e. ZZ ) |
5 |
|
nn0z |
|- ( L e. NN0 -> L e. ZZ ) |
6 |
5
|
3ad2ant2 |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> L e. ZZ ) |
7 |
3 4 6
|
3jca |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W e. Word V /\ 0 e. ZZ /\ L e. ZZ ) ) |
8 |
|
3mix3 |
|- ( ( # ` W ) < L -> ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) ) |
9 |
8
|
3ad2ant3 |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) ) |
10 |
|
swrdnd |
|- ( ( W e. Word V /\ 0 e. ZZ /\ L e. ZZ ) -> ( ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) -> ( W substr <. 0 , L >. ) = (/) ) ) |
11 |
7 9 10
|
sylc |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W substr <. 0 , L >. ) = (/) ) |
12 |
2 11
|
eqtrd |
|- ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W prefix L ) = (/) ) |