Metamath Proof Explorer


Theorem pfxnndmnd

Description: The value of a prefix operation for out-of-domain arguments. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-Dec-2022) (New usage is discouraged.)

Ref Expression
Assertion pfxnndmnd
|- ( -. ( S e. _V /\ L e. NN0 ) -> ( S prefix L ) = (/) )

Proof

Step Hyp Ref Expression
1 df-pfx
 |-  prefix = ( s e. _V , l e. NN0 |-> ( s substr <. 0 , l >. ) )
2 1 mpondm0
 |-  ( -. ( S e. _V /\ L e. NN0 ) -> ( S prefix L ) = (/) )