Step |
Hyp |
Ref |
Expression |
1 |
|
elfznn0 |
|- ( N e. ( 0 ... ( # ` W ) ) -> N e. NN0 ) |
2 |
1
|
anim2i |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( W e. Word V /\ N e. NN0 ) ) |
3 |
2
|
3adant3 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W e. Word V /\ N e. NN0 ) ) |
4 |
|
pfxval |
|- ( ( W e. Word V /\ N e. NN0 ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
5 |
3 4
|
syl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W prefix N ) = ( W substr <. 0 , N >. ) ) |
6 |
5
|
oveq1d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( ( W prefix N ) prefix L ) = ( ( W substr <. 0 , N >. ) prefix L ) ) |
7 |
|
simp1 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> W e. Word V ) |
8 |
|
simp2 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> N e. ( 0 ... ( # ` W ) ) ) |
9 |
|
0elfz |
|- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
10 |
1 9
|
syl |
|- ( N e. ( 0 ... ( # ` W ) ) -> 0 e. ( 0 ... N ) ) |
11 |
10
|
3ad2ant2 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> 0 e. ( 0 ... N ) ) |
12 |
7 8 11
|
3jca |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ 0 e. ( 0 ... N ) ) ) |
13 |
1
|
nn0cnd |
|- ( N e. ( 0 ... ( # ` W ) ) -> N e. CC ) |
14 |
13
|
subid1d |
|- ( N e. ( 0 ... ( # ` W ) ) -> ( N - 0 ) = N ) |
15 |
14
|
eqcomd |
|- ( N e. ( 0 ... ( # ` W ) ) -> N = ( N - 0 ) ) |
16 |
15
|
adantl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> N = ( N - 0 ) ) |
17 |
16
|
oveq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( 0 ... N ) = ( 0 ... ( N - 0 ) ) ) |
18 |
17
|
eleq2d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) ) -> ( L e. ( 0 ... N ) <-> L e. ( 0 ... ( N - 0 ) ) ) ) |
19 |
18
|
biimp3a |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> L e. ( 0 ... ( N - 0 ) ) ) |
20 |
|
pfxswrd |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ 0 e. ( 0 ... N ) ) -> ( L e. ( 0 ... ( N - 0 ) ) -> ( ( W substr <. 0 , N >. ) prefix L ) = ( W substr <. 0 , ( 0 + L ) >. ) ) ) |
21 |
12 19 20
|
sylc |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( ( W substr <. 0 , N >. ) prefix L ) = ( W substr <. 0 , ( 0 + L ) >. ) ) |
22 |
|
elfznn0 |
|- ( L e. ( 0 ... N ) -> L e. NN0 ) |
23 |
22
|
nn0cnd |
|- ( L e. ( 0 ... N ) -> L e. CC ) |
24 |
23
|
addid2d |
|- ( L e. ( 0 ... N ) -> ( 0 + L ) = L ) |
25 |
24
|
opeq2d |
|- ( L e. ( 0 ... N ) -> <. 0 , ( 0 + L ) >. = <. 0 , L >. ) |
26 |
25
|
oveq2d |
|- ( L e. ( 0 ... N ) -> ( W substr <. 0 , ( 0 + L ) >. ) = ( W substr <. 0 , L >. ) ) |
27 |
26
|
3ad2ant3 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W substr <. 0 , ( 0 + L ) >. ) = ( W substr <. 0 , L >. ) ) |
28 |
22
|
anim2i |
|- ( ( W e. Word V /\ L e. ( 0 ... N ) ) -> ( W e. Word V /\ L e. NN0 ) ) |
29 |
28
|
3adant2 |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W e. Word V /\ L e. NN0 ) ) |
30 |
|
pfxval |
|- ( ( W e. Word V /\ L e. NN0 ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
31 |
29 30
|
syl |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) |
32 |
27 31
|
eqtr4d |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( W substr <. 0 , ( 0 + L ) >. ) = ( W prefix L ) ) |
33 |
6 21 32
|
3eqtrd |
|- ( ( W e. Word V /\ N e. ( 0 ... ( # ` W ) ) /\ L e. ( 0 ... N ) ) -> ( ( W prefix N ) prefix L ) = ( W prefix L ) ) |