Step |
Hyp |
Ref |
Expression |
1 |
|
pfxmpt |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) = ( x e. ( 0 ..^ L ) |-> ( S ` x ) ) ) |
2 |
|
wrdf |
|- ( S e. Word A -> S : ( 0 ..^ ( # ` S ) ) --> A ) |
3 |
2
|
adantr |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> S : ( 0 ..^ ( # ` S ) ) --> A ) |
4 |
|
elfzuz3 |
|- ( L e. ( 0 ... ( # ` S ) ) -> ( # ` S ) e. ( ZZ>= ` L ) ) |
5 |
4
|
adantl |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( # ` S ) e. ( ZZ>= ` L ) ) |
6 |
|
fzoss2 |
|- ( ( # ` S ) e. ( ZZ>= ` L ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` S ) ) ) |
7 |
5 6
|
syl |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( 0 ..^ L ) C_ ( 0 ..^ ( # ` S ) ) ) |
8 |
3 7
|
feqresmpt |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S |` ( 0 ..^ L ) ) = ( x e. ( 0 ..^ L ) |-> ( S ` x ) ) ) |
9 |
1 8
|
eqtr4d |
|- ( ( S e. Word A /\ L e. ( 0 ... ( # ` S ) ) ) -> ( S prefix L ) = ( S |` ( 0 ..^ L ) ) ) |