Metamath Proof Explorer


Theorem pfxrn3

Description: Express the range of a prefix of a word. Stronger version of pfxrn2 . (Contributed by Thierry Arnoux, 13-Dec-2023)

Ref Expression
Assertion pfxrn3
|- ( ( W e. Word S /\ L e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix L ) = ( W " ( 0 ..^ L ) ) )

Proof

Step Hyp Ref Expression
1 pfxres
 |-  ( ( W e. Word S /\ L e. ( 0 ... ( # ` W ) ) ) -> ( W prefix L ) = ( W |` ( 0 ..^ L ) ) )
2 1 rneqd
 |-  ( ( W e. Word S /\ L e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix L ) = ran ( W |` ( 0 ..^ L ) ) )
3 df-ima
 |-  ( W " ( 0 ..^ L ) ) = ran ( W |` ( 0 ..^ L ) )
4 2 3 eqtr4di
 |-  ( ( W e. Word S /\ L e. ( 0 ... ( # ` W ) ) ) -> ran ( W prefix L ) = ( W " ( 0 ..^ L ) ) )