| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqwrd |  |-  ( ( W e. Word V /\ S e. Word V ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 3 |  | elfzofz |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. ( 0 ... ( # ` W ) ) ) | 
						
							| 4 |  | fzosplit |  |-  ( I e. ( 0 ... ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) | 
						
							| 6 | 5 | 3ad2ant3 |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( 0 ..^ ( # ` W ) ) = ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ) | 
						
							| 8 | 7 | raleqdv |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> A. i e. ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ( W ` i ) = ( S ` i ) ) ) | 
						
							| 9 |  | ralunb |  |-  ( A. i e. ( ( 0 ..^ I ) u. ( I ..^ ( # ` W ) ) ) ( W ` i ) = ( S ` i ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) | 
						
							| 10 | 8 9 | bitrdi |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 11 |  | eqidd |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I = I ) | 
						
							| 12 |  | 3simpa |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W e. Word V /\ S e. Word V ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( W e. Word V /\ S e. Word V ) ) | 
						
							| 14 |  | elfzonn0 |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I e. NN0 ) | 
						
							| 15 | 14 14 | jca |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> ( I e. NN0 /\ I e. NN0 ) ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ I e. NN0 ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I e. NN0 /\ I e. NN0 ) ) | 
						
							| 18 |  | elfzo0le |  |-  ( I e. ( 0 ..^ ( # ` W ) ) -> I <_ ( # ` W ) ) | 
						
							| 19 | 18 | 3ad2ant3 |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> I <_ ( # ` W ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I <_ ( # ` W ) ) | 
						
							| 21 |  | breq2 |  |-  ( ( # ` W ) = ( # ` S ) -> ( I <_ ( # ` W ) <-> I <_ ( # ` S ) ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I <_ ( # ` W ) <-> I <_ ( # ` S ) ) ) | 
						
							| 23 | 20 22 | mpbid |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> I <_ ( # ` S ) ) | 
						
							| 24 |  | pfxeq |  |-  ( ( ( W e. Word V /\ S e. Word V ) /\ ( I e. NN0 /\ I e. NN0 ) /\ ( I <_ ( # ` W ) /\ I <_ ( # ` S ) ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> ( I = I /\ A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 25 | 13 17 20 23 24 | syl112anc |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> ( I = I /\ A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 26 | 11 25 | mpbirand |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W prefix I ) = ( S prefix I ) <-> A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) ) ) | 
						
							| 27 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 28 | 27 14 | anim12ci |  |-  ( ( W e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) | 
						
							| 29 | 28 | 3adant2 |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( I e. NN0 /\ ( # ` W ) e. NN0 ) ) | 
						
							| 31 | 27 | nn0red |  |-  ( W e. Word V -> ( # ` W ) e. RR ) | 
						
							| 32 | 31 | leidd |  |-  ( W e. Word V -> ( # ` W ) <_ ( # ` W ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` W ) ) | 
						
							| 34 |  | eqle |  |-  ( ( ( # ` W ) e. RR /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` S ) ) | 
						
							| 35 | 31 34 | sylan |  |-  ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( # ` W ) <_ ( # ` S ) ) | 
						
							| 36 | 33 35 | jca |  |-  ( ( W e. Word V /\ ( # ` W ) = ( # ` S ) ) -> ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) | 
						
							| 37 | 36 | 3ad2antl1 |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) | 
						
							| 38 |  | swrdspsleq |  |-  ( ( ( W e. Word V /\ S e. Word V ) /\ ( I e. NN0 /\ ( # ` W ) e. NN0 ) /\ ( ( # ` W ) <_ ( # ` W ) /\ ( # ` W ) <_ ( # ` S ) ) ) -> ( ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) <-> A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) | 
						
							| 39 | 13 30 37 38 | syl3anc |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) <-> A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) | 
						
							| 40 | 26 39 | anbi12d |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) <-> ( A. i e. ( 0 ..^ I ) ( W ` i ) = ( S ` i ) /\ A. i e. ( I ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) ) ) | 
						
							| 41 | 10 40 | bitr4d |  |-  ( ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) /\ ( # ` W ) = ( # ` S ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) <-> ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) | 
						
							| 42 | 41 | pm5.32da |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( # ` W ) = ( # ` S ) /\ A. i e. ( 0 ..^ ( # ` W ) ) ( W ` i ) = ( S ` i ) ) <-> ( ( # ` W ) = ( # ` S ) /\ ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) ) | 
						
							| 43 | 2 42 | bitrd |  |-  ( ( W e. Word V /\ S e. Word V /\ I e. ( 0 ..^ ( # ` W ) ) ) -> ( W = S <-> ( ( # ` W ) = ( # ` S ) /\ ( ( W prefix I ) = ( S prefix I ) /\ ( W substr <. I , ( # ` W ) >. ) = ( S substr <. I , ( # ` W ) >. ) ) ) ) ) |