| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfin |  |-  ( W e. Word V -> W e. Fin ) | 
						
							| 2 |  | 1elfz0hash |  |-  ( ( W e. Fin /\ W =/= (/) ) -> 1 e. ( 0 ... ( # ` W ) ) ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( W e. Word V /\ W =/= (/) ) -> 1 e. ( 0 ... ( # ` W ) ) ) | 
						
							| 4 |  | lennncl |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) | 
						
							| 5 |  | elfz1end |  |-  ( ( # ` W ) e. NN <-> ( # ` W ) e. ( 1 ... ( # ` W ) ) ) | 
						
							| 6 | 4 5 | sylib |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. ( 1 ... ( # ` W ) ) ) | 
						
							| 7 | 3 6 | jca |  |-  ( ( W e. Word V /\ W =/= (/) ) -> ( 1 e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 8 | 7 | 3adant3 |  |-  ( ( W e. Word V /\ W =/= (/) /\ I e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( 1 e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 1 ... ( # ` W ) ) ) ) | 
						
							| 9 |  | fz0fzdiffz0 |  |-  ( ( 1 e. ( 0 ... ( # ` W ) ) /\ ( # ` W ) e. ( 1 ... ( # ` W ) ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( W e. Word V /\ W =/= (/) /\ I e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( # ` W ) - 1 ) e. ( 0 ... ( # ` W ) ) ) | 
						
							| 11 |  | pfxfv |  |-  ( ( W e. Word V /\ ( ( # ` W ) - 1 ) e. ( 0 ... ( # ` W ) ) /\ I e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ` I ) = ( W ` I ) ) | 
						
							| 12 | 10 11 | syld3an2 |  |-  ( ( W e. Word V /\ W =/= (/) /\ I e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ` I ) = ( W ` I ) ) |