| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W e. Word V ) | 
						
							| 2 |  | wrdlenge2n0 |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> W =/= (/) ) | 
						
							| 3 |  | 2z |  |-  2 e. ZZ | 
						
							| 4 | 3 | a1i |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 2 e. ZZ ) | 
						
							| 5 |  | lencl |  |-  ( W e. Word V -> ( # ` W ) e. NN0 ) | 
						
							| 6 | 5 | nn0zd |  |-  ( W e. Word V -> ( # ` W ) e. ZZ ) | 
						
							| 7 | 6 | adantr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( # ` W ) e. ZZ ) | 
						
							| 8 |  | simpr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 2 <_ ( # ` W ) ) | 
						
							| 9 |  | eluz2 |  |-  ( ( # ` W ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( # ` W ) e. ZZ /\ 2 <_ ( # ` W ) ) ) | 
						
							| 10 | 4 7 8 9 | syl3anbrc |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` 2 ) ) | 
						
							| 11 |  | uz2m1nn |  |-  ( ( # ` W ) e. ( ZZ>= ` 2 ) -> ( ( # ` W ) - 1 ) e. NN ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( ( # ` W ) - 1 ) e. NN ) | 
						
							| 13 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ ( ( # ` W ) - 1 ) ) <-> ( ( # ` W ) - 1 ) e. NN ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> 0 e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) | 
						
							| 15 |  | pfxtrcfv |  |-  ( ( W e. Word V /\ W =/= (/) /\ 0 e. ( 0 ..^ ( ( # ` W ) - 1 ) ) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ` 0 ) = ( W ` 0 ) ) | 
						
							| 16 | 1 2 14 15 | syl3anc |  |-  ( ( W e. Word V /\ 2 <_ ( # ` W ) ) -> ( ( W prefix ( ( # ` W ) - 1 ) ) ` 0 ) = ( W ` 0 ) ) |