Metamath Proof Explorer


Theorem pfxwrdsymb

Description: A prefix of a word is a word over the symbols it consists of. (Contributed by AV, 3-Dec-2022)

Ref Expression
Assertion pfxwrdsymb
|- ( S e. Word A -> ( S prefix L ) e. Word ( S " ( 0 ..^ L ) ) )

Proof

Step Hyp Ref Expression
1 pfxval0
 |-  ( S e. Word A -> ( S prefix L ) = ( S substr <. 0 , L >. ) )
2 swrdwrdsymb
 |-  ( S e. Word A -> ( S substr <. 0 , L >. ) e. Word ( S " ( 0 ..^ L ) ) )
3 1 2 eqeltrd
 |-  ( S e. Word A -> ( S prefix L ) e. Word ( S " ( 0 ..^ L ) ) )