| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgp0.1 |  |-  .0. = ( 0g ` G ) | 
						
							| 2 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 3 | 2 | adantl |  |-  ( ( G e. Grp /\ P e. Prime ) -> P e. NN ) | 
						
							| 4 | 3 | nncnd |  |-  ( ( G e. Grp /\ P e. Prime ) -> P e. CC ) | 
						
							| 5 | 4 | exp0d |  |-  ( ( G e. Grp /\ P e. Prime ) -> ( P ^ 0 ) = 1 ) | 
						
							| 6 | 1 | fvexi |  |-  .0. e. _V | 
						
							| 7 |  | hashsng |  |-  ( .0. e. _V -> ( # ` { .0. } ) = 1 ) | 
						
							| 8 | 6 7 | ax-mp |  |-  ( # ` { .0. } ) = 1 | 
						
							| 9 | 1 | 0subg |  |-  ( G e. Grp -> { .0. } e. ( SubGrp ` G ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( G e. Grp /\ P e. Prime ) -> { .0. } e. ( SubGrp ` G ) ) | 
						
							| 11 |  | eqid |  |-  ( G |`s { .0. } ) = ( G |`s { .0. } ) | 
						
							| 12 | 11 | subgbas |  |-  ( { .0. } e. ( SubGrp ` G ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( G e. Grp /\ P e. Prime ) -> { .0. } = ( Base ` ( G |`s { .0. } ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ( G e. Grp /\ P e. Prime ) -> ( # ` { .0. } ) = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) | 
						
							| 15 | 8 14 | eqtr3id |  |-  ( ( G e. Grp /\ P e. Prime ) -> 1 = ( # ` ( Base ` ( G |`s { .0. } ) ) ) ) | 
						
							| 16 | 5 15 | eqtr2d |  |-  ( ( G e. Grp /\ P e. Prime ) -> ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) ) | 
						
							| 17 | 11 | subggrp |  |-  ( { .0. } e. ( SubGrp ` G ) -> ( G |`s { .0. } ) e. Grp ) | 
						
							| 18 | 10 17 | syl |  |-  ( ( G e. Grp /\ P e. Prime ) -> ( G |`s { .0. } ) e. Grp ) | 
						
							| 19 |  | simpr |  |-  ( ( G e. Grp /\ P e. Prime ) -> P e. Prime ) | 
						
							| 20 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 21 | 20 | a1i |  |-  ( ( G e. Grp /\ P e. Prime ) -> 0 e. NN0 ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( G |`s { .0. } ) ) = ( Base ` ( G |`s { .0. } ) ) | 
						
							| 23 | 22 | pgpfi1 |  |-  ( ( ( G |`s { .0. } ) e. Grp /\ P e. Prime /\ 0 e. NN0 ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) | 
						
							| 24 | 18 19 21 23 | syl3anc |  |-  ( ( G e. Grp /\ P e. Prime ) -> ( ( # ` ( Base ` ( G |`s { .0. } ) ) ) = ( P ^ 0 ) -> P pGrp ( G |`s { .0. } ) ) ) | 
						
							| 25 | 16 24 | mpd |  |-  ( ( G e. Grp /\ P e. Prime ) -> P pGrp ( G |`s { .0. } ) ) |