Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac.b |
|- B = ( Base ` G ) |
2 |
|
pgpfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
pgpfac.g |
|- ( ph -> G e. Abel ) |
4 |
|
pgpfac.p |
|- ( ph -> P pGrp G ) |
5 |
|
pgpfac.f |
|- ( ph -> B e. Fin ) |
6 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
7 |
1
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
8 |
3 6 7
|
3syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
9 |
|
eleq1 |
|- ( t = u -> ( t e. ( SubGrp ` G ) <-> u e. ( SubGrp ` G ) ) ) |
10 |
|
eqeq2 |
|- ( t = u -> ( ( G DProd s ) = t <-> ( G DProd s ) = u ) ) |
11 |
10
|
anbi2d |
|- ( t = u -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = u ) ) ) |
12 |
11
|
rexbidv |
|- ( t = u -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) |
13 |
9 12
|
imbi12d |
|- ( t = u -> ( ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) |
14 |
13
|
imbi2d |
|- ( t = u -> ( ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
15 |
|
eleq1 |
|- ( t = B -> ( t e. ( SubGrp ` G ) <-> B e. ( SubGrp ` G ) ) ) |
16 |
|
eqeq2 |
|- ( t = B -> ( ( G DProd s ) = t <-> ( G DProd s ) = B ) ) |
17 |
16
|
anbi2d |
|- ( t = B -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
18 |
17
|
rexbidv |
|- ( t = B -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
19 |
15 18
|
imbi12d |
|- ( t = B -> ( ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) |
20 |
19
|
imbi2d |
|- ( t = B -> ( ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) ) |
21 |
|
bi2.04 |
|- ( ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
22 |
21
|
imbi2i |
|- ( ( ph -> ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
23 |
|
bi2.04 |
|- ( ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
24 |
|
bi2.04 |
|- ( ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
25 |
22 23 24
|
3bitr4i |
|- ( ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
26 |
25
|
albii |
|- ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> A. t ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
27 |
|
df-ral |
|- ( A. t e. ( SubGrp ` G ) ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> A. t ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
28 |
|
r19.21v |
|- ( A. t e. ( SubGrp ` G ) ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
29 |
26 27 28
|
3bitr2i |
|- ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
30 |
3
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> G e. Abel ) |
31 |
4
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> P pGrp G ) |
32 |
5
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> B e. Fin ) |
33 |
|
simprr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> u e. ( SubGrp ` G ) ) |
34 |
|
simprl |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
35 |
|
psseq1 |
|- ( t = x -> ( t C. u <-> x C. u ) ) |
36 |
|
eqeq2 |
|- ( t = x -> ( ( G DProd s ) = t <-> ( G DProd s ) = x ) ) |
37 |
36
|
anbi2d |
|- ( t = x -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
38 |
37
|
rexbidv |
|- ( t = x -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
39 |
35 38
|
imbi12d |
|- ( t = x -> ( ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) ) |
40 |
39
|
cbvralvw |
|- ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> A. x e. ( SubGrp ` G ) ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
41 |
34 40
|
sylib |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> A. x e. ( SubGrp ` G ) ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
42 |
1 2 30 31 32 33 41
|
pgpfaclem3 |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) |
43 |
42
|
exp32 |
|- ( ph -> ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) |
44 |
43
|
a1i |
|- ( u e. Fin -> ( ph -> ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
45 |
44
|
a2d |
|- ( u e. Fin -> ( ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) -> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
46 |
29 45
|
syl5bi |
|- ( u e. Fin -> ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) -> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
47 |
14 20 46
|
findcard3 |
|- ( B e. Fin -> ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) |
48 |
5 47
|
mpcom |
|- ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
49 |
8 48
|
mpd |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |