Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
12 |
|
pgpfac1.ab |
|- ( ph -> A e. B ) |
13 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
14 |
3
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
15 |
9 13 14
|
3syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
16 |
|
eleq1 |
|- ( s = u -> ( s e. ( SubGrp ` G ) <-> u e. ( SubGrp ` G ) ) ) |
17 |
|
eleq2 |
|- ( s = u -> ( A e. s <-> A e. u ) ) |
18 |
16 17
|
anbi12d |
|- ( s = u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) <-> ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) |
19 |
|
eqeq2 |
|- ( s = u -> ( ( S .(+) t ) = s <-> ( S .(+) t ) = u ) ) |
20 |
19
|
anbi2d |
|- ( s = u -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) |
21 |
20
|
rexbidv |
|- ( s = u -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) |
22 |
18 21
|
imbi12d |
|- ( s = u -> ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
23 |
22
|
imbi2d |
|- ( s = u -> ( ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) ) |
24 |
|
eleq1 |
|- ( s = B -> ( s e. ( SubGrp ` G ) <-> B e. ( SubGrp ` G ) ) ) |
25 |
|
eleq2 |
|- ( s = B -> ( A e. s <-> A e. B ) ) |
26 |
24 25
|
anbi12d |
|- ( s = B -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) <-> ( B e. ( SubGrp ` G ) /\ A e. B ) ) ) |
27 |
|
eqeq2 |
|- ( s = B -> ( ( S .(+) t ) = s <-> ( S .(+) t ) = B ) ) |
28 |
27
|
anbi2d |
|- ( s = B -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
29 |
28
|
rexbidv |
|- ( s = B -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
30 |
26 29
|
imbi12d |
|- ( s = B -> ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) |
31 |
30
|
imbi2d |
|- ( s = B -> ( ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) ) |
32 |
|
bi2.04 |
|- ( ( s C. u -> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
33 |
|
impexp |
|- ( ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
34 |
33
|
imbi2i |
|- ( ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s C. u -> ( s e. ( SubGrp ` G ) -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
35 |
|
impexp |
|- ( ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) <-> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
36 |
35
|
imbi2i |
|- ( ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( s C. u -> ( A e. s -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
37 |
32 34 36
|
3bitr4i |
|- ( ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
38 |
37
|
imbi2i |
|- ( ( ph -> ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
39 |
|
bi2.04 |
|- ( ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s C. u -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
40 |
|
bi2.04 |
|- ( ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> ( s e. ( SubGrp ` G ) -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
41 |
38 39 40
|
3bitr4i |
|- ( ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
42 |
41
|
albii |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> A. s ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
43 |
|
df-ral |
|- ( A. s e. ( SubGrp ` G ) ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> A. s ( s e. ( SubGrp ` G ) -> ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) ) |
44 |
|
r19.21v |
|- ( A. s e. ( SubGrp ` G ) ( ph -> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) <-> ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
45 |
42 43 44
|
3bitr2i |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) <-> ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
46 |
|
psseq1 |
|- ( x = s -> ( x C. u <-> s C. u ) ) |
47 |
|
eleq2 |
|- ( x = s -> ( A e. x <-> A e. s ) ) |
48 |
46 47
|
anbi12d |
|- ( x = s -> ( ( x C. u /\ A e. x ) <-> ( s C. u /\ A e. s ) ) ) |
49 |
|
ineq2 |
|- ( y = t -> ( S i^i y ) = ( S i^i t ) ) |
50 |
49
|
eqeq1d |
|- ( y = t -> ( ( S i^i y ) = { .0. } <-> ( S i^i t ) = { .0. } ) ) |
51 |
|
oveq2 |
|- ( y = t -> ( S .(+) y ) = ( S .(+) t ) ) |
52 |
51
|
eqeq1d |
|- ( y = t -> ( ( S .(+) y ) = x <-> ( S .(+) t ) = x ) ) |
53 |
50 52
|
anbi12d |
|- ( y = t -> ( ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) ) ) |
54 |
53
|
cbvrexvw |
|- ( E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) ) |
55 |
|
eqeq2 |
|- ( x = s -> ( ( S .(+) t ) = x <-> ( S .(+) t ) = s ) ) |
56 |
55
|
anbi2d |
|- ( x = s -> ( ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) <-> ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
57 |
56
|
rexbidv |
|- ( x = s -> ( E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
58 |
54 57
|
syl5bb |
|- ( x = s -> ( E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) <-> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
59 |
48 58
|
imbi12d |
|- ( x = s -> ( ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) <-> ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) |
60 |
59
|
cbvralvw |
|- ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) <-> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
61 |
8
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> P pGrp G ) |
62 |
9
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> G e. Abel ) |
63 |
10
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> B e. Fin ) |
64 |
11
|
adantr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> ( O ` A ) = E ) |
65 |
|
simprrl |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> u e. ( SubGrp ` G ) ) |
66 |
|
simprrr |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A e. u ) |
67 |
|
simprl |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) ) |
68 |
67 60
|
sylib |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) |
69 |
1 2 3 4 5 6 7 61 62 63 64 65 66 68
|
pgpfac1lem5 |
|- ( ( ph /\ ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) /\ ( u e. ( SubGrp ` G ) /\ A e. u ) ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) |
70 |
69
|
exp32 |
|- ( ph -> ( A. x e. ( SubGrp ` G ) ( ( x C. u /\ A e. x ) -> E. y e. ( SubGrp ` G ) ( ( S i^i y ) = { .0. } /\ ( S .(+) y ) = x ) ) -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
71 |
60 70
|
syl5bir |
|- ( ph -> ( A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
72 |
71
|
a2i |
|- ( ( ph -> A. s e. ( SubGrp ` G ) ( ( s C. u /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
73 |
45 72
|
sylbi |
|- ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) |
74 |
73
|
a1i |
|- ( u e. Fin -> ( A. s ( s C. u -> ( ph -> ( ( s e. ( SubGrp ` G ) /\ A e. s ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = s ) ) ) ) -> ( ph -> ( ( u e. ( SubGrp ` G ) /\ A e. u ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = u ) ) ) ) ) |
75 |
23 31 74
|
findcard3 |
|- ( B e. Fin -> ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) ) |
76 |
10 75
|
mpcom |
|- ( ph -> ( ( B e. ( SubGrp ` G ) /\ A e. B ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) ) |
77 |
15 12 76
|
mp2and |
|- ( ph -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = B ) ) |