| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
| 2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
| 3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
| 4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
| 5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
| 6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
| 7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
| 8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
| 9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
| 10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
| 11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
| 12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
| 13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
| 14 |
|
pgpfac1.w |
|- ( ph -> W e. ( SubGrp ` G ) ) |
| 15 |
|
pgpfac1.i |
|- ( ph -> ( S i^i W ) = { .0. } ) |
| 16 |
|
pgpfac1.ss |
|- ( ph -> ( S .(+) W ) C_ U ) |
| 17 |
|
pgpfac1.2 |
|- ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
| 18 |
|
pgpfac1.c |
|- ( ph -> C e. ( U \ ( S .(+) W ) ) ) |
| 19 |
|
pgpfac1.mg |
|- .x. = ( .g ` G ) |
| 20 |
|
pgpfac1.m |
|- ( ph -> M e. ZZ ) |
| 21 |
|
pgpfac1.mw |
|- ( ph -> ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) e. W ) |
| 22 |
18
|
eldifbd |
|- ( ph -> -. C e. ( S .(+) W ) ) |
| 23 |
|
pgpprm |
|- ( P pGrp G -> P e. Prime ) |
| 24 |
8 23
|
syl |
|- ( ph -> P e. Prime ) |
| 25 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 26 |
9 25
|
syl |
|- ( ph -> G e. Grp ) |
| 27 |
3 5
|
gexcl2 |
|- ( ( G e. Grp /\ B e. Fin ) -> E e. NN ) |
| 28 |
26 10 27
|
syl2anc |
|- ( ph -> E e. NN ) |
| 29 |
|
pceq0 |
|- ( ( P e. Prime /\ E e. NN ) -> ( ( P pCnt E ) = 0 <-> -. P || E ) ) |
| 30 |
24 28 29
|
syl2anc |
|- ( ph -> ( ( P pCnt E ) = 0 <-> -. P || E ) ) |
| 31 |
|
oveq2 |
|- ( ( P pCnt E ) = 0 -> ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) ) |
| 32 |
30 31
|
biimtrrdi |
|- ( ph -> ( -. P || E -> ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) ) ) |
| 33 |
3
|
grpbn0 |
|- ( G e. Grp -> B =/= (/) ) |
| 34 |
26 33
|
syl |
|- ( ph -> B =/= (/) ) |
| 35 |
|
hashnncl |
|- ( B e. Fin -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 36 |
10 35
|
syl |
|- ( ph -> ( ( # ` B ) e. NN <-> B =/= (/) ) ) |
| 37 |
34 36
|
mpbird |
|- ( ph -> ( # ` B ) e. NN ) |
| 38 |
24 37
|
pccld |
|- ( ph -> ( P pCnt ( # ` B ) ) e. NN0 ) |
| 39 |
3 5
|
gexdvds3 |
|- ( ( G e. Grp /\ B e. Fin ) -> E || ( # ` B ) ) |
| 40 |
26 10 39
|
syl2anc |
|- ( ph -> E || ( # ` B ) ) |
| 41 |
3
|
pgphash |
|- ( ( P pGrp G /\ B e. Fin ) -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 42 |
8 10 41
|
syl2anc |
|- ( ph -> ( # ` B ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 43 |
40 42
|
breqtrd |
|- ( ph -> E || ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 44 |
|
oveq2 |
|- ( k = ( P pCnt ( # ` B ) ) -> ( P ^ k ) = ( P ^ ( P pCnt ( # ` B ) ) ) ) |
| 45 |
44
|
breq2d |
|- ( k = ( P pCnt ( # ` B ) ) -> ( E || ( P ^ k ) <-> E || ( P ^ ( P pCnt ( # ` B ) ) ) ) ) |
| 46 |
45
|
rspcev |
|- ( ( ( P pCnt ( # ` B ) ) e. NN0 /\ E || ( P ^ ( P pCnt ( # ` B ) ) ) ) -> E. k e. NN0 E || ( P ^ k ) ) |
| 47 |
38 43 46
|
syl2anc |
|- ( ph -> E. k e. NN0 E || ( P ^ k ) ) |
| 48 |
|
pcprmpw2 |
|- ( ( P e. Prime /\ E e. NN ) -> ( E. k e. NN0 E || ( P ^ k ) <-> E = ( P ^ ( P pCnt E ) ) ) ) |
| 49 |
24 28 48
|
syl2anc |
|- ( ph -> ( E. k e. NN0 E || ( P ^ k ) <-> E = ( P ^ ( P pCnt E ) ) ) ) |
| 50 |
47 49
|
mpbid |
|- ( ph -> E = ( P ^ ( P pCnt E ) ) ) |
| 51 |
50
|
eqcomd |
|- ( ph -> ( P ^ ( P pCnt E ) ) = E ) |
| 52 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 53 |
24 52
|
syl |
|- ( ph -> P e. NN ) |
| 54 |
53
|
nncnd |
|- ( ph -> P e. CC ) |
| 55 |
54
|
exp0d |
|- ( ph -> ( P ^ 0 ) = 1 ) |
| 56 |
51 55
|
eqeq12d |
|- ( ph -> ( ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) <-> E = 1 ) ) |
| 57 |
26
|
grpmndd |
|- ( ph -> G e. Mnd ) |
| 58 |
3 5
|
gex1 |
|- ( G e. Mnd -> ( E = 1 <-> B ~~ 1o ) ) |
| 59 |
57 58
|
syl |
|- ( ph -> ( E = 1 <-> B ~~ 1o ) ) |
| 60 |
56 59
|
bitrd |
|- ( ph -> ( ( P ^ ( P pCnt E ) ) = ( P ^ 0 ) <-> B ~~ 1o ) ) |
| 61 |
32 60
|
sylibd |
|- ( ph -> ( -. P || E -> B ~~ 1o ) ) |
| 62 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 63 |
26 62
|
syl |
|- ( ph -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
| 64 |
63
|
acsmred |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
| 65 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
| 66 |
12 65
|
syl |
|- ( ph -> U C_ B ) |
| 67 |
66 13
|
sseldd |
|- ( ph -> A e. B ) |
| 68 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 69 |
64 67 68
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
| 70 |
2 69
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
| 71 |
7
|
lsmsubg2 |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 72 |
9 70 14 71
|
syl3anc |
|- ( ph -> ( S .(+) W ) e. ( SubGrp ` G ) ) |
| 73 |
6
|
subg0cl |
|- ( ( S .(+) W ) e. ( SubGrp ` G ) -> .0. e. ( S .(+) W ) ) |
| 74 |
72 73
|
syl |
|- ( ph -> .0. e. ( S .(+) W ) ) |
| 75 |
74
|
snssd |
|- ( ph -> { .0. } C_ ( S .(+) W ) ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ B ~~ 1o ) -> { .0. } C_ ( S .(+) W ) ) |
| 77 |
18
|
eldifad |
|- ( ph -> C e. U ) |
| 78 |
66 77
|
sseldd |
|- ( ph -> C e. B ) |
| 79 |
78
|
adantr |
|- ( ( ph /\ B ~~ 1o ) -> C e. B ) |
| 80 |
3 6
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
| 81 |
26 80
|
syl |
|- ( ph -> .0. e. B ) |
| 82 |
|
en1eqsn |
|- ( ( .0. e. B /\ B ~~ 1o ) -> B = { .0. } ) |
| 83 |
81 82
|
sylan |
|- ( ( ph /\ B ~~ 1o ) -> B = { .0. } ) |
| 84 |
79 83
|
eleqtrd |
|- ( ( ph /\ B ~~ 1o ) -> C e. { .0. } ) |
| 85 |
76 84
|
sseldd |
|- ( ( ph /\ B ~~ 1o ) -> C e. ( S .(+) W ) ) |
| 86 |
85
|
ex |
|- ( ph -> ( B ~~ 1o -> C e. ( S .(+) W ) ) ) |
| 87 |
61 86
|
syld |
|- ( ph -> ( -. P || E -> C e. ( S .(+) W ) ) ) |
| 88 |
22 87
|
mt3d |
|- ( ph -> P || E ) |
| 89 |
28
|
nncnd |
|- ( ph -> E e. CC ) |
| 90 |
53
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 91 |
89 54 90
|
divcan1d |
|- ( ph -> ( ( E / P ) x. P ) = E ) |
| 92 |
11 91
|
eqtr4d |
|- ( ph -> ( O ` A ) = ( ( E / P ) x. P ) ) |
| 93 |
|
nndivdvds |
|- ( ( E e. NN /\ P e. NN ) -> ( P || E <-> ( E / P ) e. NN ) ) |
| 94 |
28 53 93
|
syl2anc |
|- ( ph -> ( P || E <-> ( E / P ) e. NN ) ) |
| 95 |
88 94
|
mpbid |
|- ( ph -> ( E / P ) e. NN ) |
| 96 |
95
|
nnzd |
|- ( ph -> ( E / P ) e. ZZ ) |
| 97 |
96 20
|
zmulcld |
|- ( ph -> ( ( E / P ) x. M ) e. ZZ ) |
| 98 |
67
|
snssd |
|- ( ph -> { A } C_ B ) |
| 99 |
64 1 98
|
mrcssidd |
|- ( ph -> { A } C_ ( K ` { A } ) ) |
| 100 |
99 2
|
sseqtrrdi |
|- ( ph -> { A } C_ S ) |
| 101 |
|
snssg |
|- ( A e. U -> ( A e. S <-> { A } C_ S ) ) |
| 102 |
13 101
|
syl |
|- ( ph -> ( A e. S <-> { A } C_ S ) ) |
| 103 |
100 102
|
mpbird |
|- ( ph -> A e. S ) |
| 104 |
19
|
subgmulgcl |
|- ( ( S e. ( SubGrp ` G ) /\ ( ( E / P ) x. M ) e. ZZ /\ A e. S ) -> ( ( ( E / P ) x. M ) .x. A ) e. S ) |
| 105 |
70 97 103 104
|
syl3anc |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. S ) |
| 106 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 107 |
24 106
|
syl |
|- ( ph -> P e. ZZ ) |
| 108 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ P e. ZZ /\ C e. B ) -> ( P .x. C ) e. B ) |
| 109 |
26 107 78 108
|
syl3anc |
|- ( ph -> ( P .x. C ) e. B ) |
| 110 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ M e. ZZ /\ A e. B ) -> ( M .x. A ) e. B ) |
| 111 |
26 20 67 110
|
syl3anc |
|- ( ph -> ( M .x. A ) e. B ) |
| 112 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 113 |
3 19 112
|
mulgdi |
|- ( ( G e. Abel /\ ( ( E / P ) e. ZZ /\ ( P .x. C ) e. B /\ ( M .x. A ) e. B ) ) -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) |
| 114 |
9 96 109 111 113
|
syl13anc |
|- ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) |
| 115 |
91
|
oveq1d |
|- ( ph -> ( ( ( E / P ) x. P ) .x. C ) = ( E .x. C ) ) |
| 116 |
3 19
|
mulgass |
|- ( ( G e. Grp /\ ( ( E / P ) e. ZZ /\ P e. ZZ /\ C e. B ) ) -> ( ( ( E / P ) x. P ) .x. C ) = ( ( E / P ) .x. ( P .x. C ) ) ) |
| 117 |
26 96 107 78 116
|
syl13anc |
|- ( ph -> ( ( ( E / P ) x. P ) .x. C ) = ( ( E / P ) .x. ( P .x. C ) ) ) |
| 118 |
3 5 19 6
|
gexid |
|- ( C e. B -> ( E .x. C ) = .0. ) |
| 119 |
78 118
|
syl |
|- ( ph -> ( E .x. C ) = .0. ) |
| 120 |
115 117 119
|
3eqtr3rd |
|- ( ph -> .0. = ( ( E / P ) .x. ( P .x. C ) ) ) |
| 121 |
3 19
|
mulgass |
|- ( ( G e. Grp /\ ( ( E / P ) e. ZZ /\ M e. ZZ /\ A e. B ) ) -> ( ( ( E / P ) x. M ) .x. A ) = ( ( E / P ) .x. ( M .x. A ) ) ) |
| 122 |
26 96 20 67 121
|
syl13anc |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) = ( ( E / P ) .x. ( M .x. A ) ) ) |
| 123 |
120 122
|
oveq12d |
|- ( ph -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) .x. ( P .x. C ) ) ( +g ` G ) ( ( E / P ) .x. ( M .x. A ) ) ) ) |
| 124 |
3
|
subgss |
|- ( S e. ( SubGrp ` G ) -> S C_ B ) |
| 125 |
70 124
|
syl |
|- ( ph -> S C_ B ) |
| 126 |
125 105
|
sseldd |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. B ) |
| 127 |
3 112 6
|
grplid |
|- ( ( G e. Grp /\ ( ( ( E / P ) x. M ) .x. A ) e. B ) -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) x. M ) .x. A ) ) |
| 128 |
26 126 127
|
syl2anc |
|- ( ph -> ( .0. ( +g ` G ) ( ( ( E / P ) x. M ) .x. A ) ) = ( ( ( E / P ) x. M ) .x. A ) ) |
| 129 |
114 123 128
|
3eqtr2d |
|- ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) = ( ( ( E / P ) x. M ) .x. A ) ) |
| 130 |
19
|
subgmulgcl |
|- ( ( W e. ( SubGrp ` G ) /\ ( E / P ) e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) e. W ) -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) e. W ) |
| 131 |
14 96 21 130
|
syl3anc |
|- ( ph -> ( ( E / P ) .x. ( ( P .x. C ) ( +g ` G ) ( M .x. A ) ) ) e. W ) |
| 132 |
129 131
|
eqeltrrd |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. W ) |
| 133 |
105 132
|
elind |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. ( S i^i W ) ) |
| 134 |
133 15
|
eleqtrd |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) e. { .0. } ) |
| 135 |
|
elsni |
|- ( ( ( ( E / P ) x. M ) .x. A ) e. { .0. } -> ( ( ( E / P ) x. M ) .x. A ) = .0. ) |
| 136 |
134 135
|
syl |
|- ( ph -> ( ( ( E / P ) x. M ) .x. A ) = .0. ) |
| 137 |
3 4 19 6
|
oddvds |
|- ( ( G e. Grp /\ A e. B /\ ( ( E / P ) x. M ) e. ZZ ) -> ( ( O ` A ) || ( ( E / P ) x. M ) <-> ( ( ( E / P ) x. M ) .x. A ) = .0. ) ) |
| 138 |
26 67 97 137
|
syl3anc |
|- ( ph -> ( ( O ` A ) || ( ( E / P ) x. M ) <-> ( ( ( E / P ) x. M ) .x. A ) = .0. ) ) |
| 139 |
136 138
|
mpbird |
|- ( ph -> ( O ` A ) || ( ( E / P ) x. M ) ) |
| 140 |
92 139
|
eqbrtrrd |
|- ( ph -> ( ( E / P ) x. P ) || ( ( E / P ) x. M ) ) |
| 141 |
95
|
nnne0d |
|- ( ph -> ( E / P ) =/= 0 ) |
| 142 |
|
dvdscmulr |
|- ( ( P e. ZZ /\ M e. ZZ /\ ( ( E / P ) e. ZZ /\ ( E / P ) =/= 0 ) ) -> ( ( ( E / P ) x. P ) || ( ( E / P ) x. M ) <-> P || M ) ) |
| 143 |
107 20 96 141 142
|
syl112anc |
|- ( ph -> ( ( ( E / P ) x. P ) || ( ( E / P ) x. M ) <-> P || M ) ) |
| 144 |
140 143
|
mpbid |
|- ( ph -> P || M ) |
| 145 |
88 144
|
jca |
|- ( ph -> ( P || E /\ P || M ) ) |