Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac1.k |
|- K = ( mrCls ` ( SubGrp ` G ) ) |
2 |
|
pgpfac1.s |
|- S = ( K ` { A } ) |
3 |
|
pgpfac1.b |
|- B = ( Base ` G ) |
4 |
|
pgpfac1.o |
|- O = ( od ` G ) |
5 |
|
pgpfac1.e |
|- E = ( gEx ` G ) |
6 |
|
pgpfac1.z |
|- .0. = ( 0g ` G ) |
7 |
|
pgpfac1.l |
|- .(+) = ( LSSum ` G ) |
8 |
|
pgpfac1.p |
|- ( ph -> P pGrp G ) |
9 |
|
pgpfac1.g |
|- ( ph -> G e. Abel ) |
10 |
|
pgpfac1.n |
|- ( ph -> B e. Fin ) |
11 |
|
pgpfac1.oe |
|- ( ph -> ( O ` A ) = E ) |
12 |
|
pgpfac1.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
13 |
|
pgpfac1.au |
|- ( ph -> A e. U ) |
14 |
|
pgpfac1.w |
|- ( ph -> W e. ( SubGrp ` G ) ) |
15 |
|
pgpfac1.i |
|- ( ph -> ( S i^i W ) = { .0. } ) |
16 |
|
pgpfac1.ss |
|- ( ph -> ( S .(+) W ) C_ U ) |
17 |
|
pgpfac1.2 |
|- ( ph -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
18 |
|
pgpfac1.c |
|- ( ph -> C e. ( U \ ( S .(+) W ) ) ) |
19 |
|
pgpfac1.mg |
|- .x. = ( .g ` G ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
pgpfac1lem2 |
|- ( ph -> ( P .x. C ) e. ( S .(+) W ) ) |
21 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
22 |
9 21
|
syl |
|- ( ph -> G e. Grp ) |
23 |
3
|
subgacs |
|- ( G e. Grp -> ( SubGrp ` G ) e. ( ACS ` B ) ) |
24 |
|
acsmre |
|- ( ( SubGrp ` G ) e. ( ACS ` B ) -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
25 |
22 23 24
|
3syl |
|- ( ph -> ( SubGrp ` G ) e. ( Moore ` B ) ) |
26 |
3
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
27 |
12 26
|
syl |
|- ( ph -> U C_ B ) |
28 |
27 13
|
sseldd |
|- ( ph -> A e. B ) |
29 |
1
|
mrcsncl |
|- ( ( ( SubGrp ` G ) e. ( Moore ` B ) /\ A e. B ) -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
30 |
25 28 29
|
syl2anc |
|- ( ph -> ( K ` { A } ) e. ( SubGrp ` G ) ) |
31 |
2 30
|
eqeltrid |
|- ( ph -> S e. ( SubGrp ` G ) ) |
32 |
7
|
lsmcom |
|- ( ( G e. Abel /\ S e. ( SubGrp ` G ) /\ W e. ( SubGrp ` G ) ) -> ( S .(+) W ) = ( W .(+) S ) ) |
33 |
9 31 14 32
|
syl3anc |
|- ( ph -> ( S .(+) W ) = ( W .(+) S ) ) |
34 |
20 33
|
eleqtrd |
|- ( ph -> ( P .x. C ) e. ( W .(+) S ) ) |
35 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
36 |
35 7 14 31
|
lsmelvalm |
|- ( ph -> ( ( P .x. C ) e. ( W .(+) S ) <-> E. w e. W E. s e. S ( P .x. C ) = ( w ( -g ` G ) s ) ) ) |
37 |
34 36
|
mpbid |
|- ( ph -> E. w e. W E. s e. S ( P .x. C ) = ( w ( -g ` G ) s ) ) |
38 |
|
eqid |
|- ( k e. ZZ |-> ( k .x. A ) ) = ( k e. ZZ |-> ( k .x. A ) ) |
39 |
3 19 38 1
|
cycsubg2 |
|- ( ( G e. Grp /\ A e. B ) -> ( K ` { A } ) = ran ( k e. ZZ |-> ( k .x. A ) ) ) |
40 |
22 28 39
|
syl2anc |
|- ( ph -> ( K ` { A } ) = ran ( k e. ZZ |-> ( k .x. A ) ) ) |
41 |
2 40
|
eqtrid |
|- ( ph -> S = ran ( k e. ZZ |-> ( k .x. A ) ) ) |
42 |
41
|
rexeqdv |
|- ( ph -> ( E. s e. S ( P .x. C ) = ( w ( -g ` G ) s ) <-> E. s e. ran ( k e. ZZ |-> ( k .x. A ) ) ( P .x. C ) = ( w ( -g ` G ) s ) ) ) |
43 |
|
ovex |
|- ( k .x. A ) e. _V |
44 |
43
|
rgenw |
|- A. k e. ZZ ( k .x. A ) e. _V |
45 |
|
oveq2 |
|- ( s = ( k .x. A ) -> ( w ( -g ` G ) s ) = ( w ( -g ` G ) ( k .x. A ) ) ) |
46 |
45
|
eqeq2d |
|- ( s = ( k .x. A ) -> ( ( P .x. C ) = ( w ( -g ` G ) s ) <-> ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) ) |
47 |
38 46
|
rexrnmptw |
|- ( A. k e. ZZ ( k .x. A ) e. _V -> ( E. s e. ran ( k e. ZZ |-> ( k .x. A ) ) ( P .x. C ) = ( w ( -g ` G ) s ) <-> E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) ) |
48 |
44 47
|
ax-mp |
|- ( E. s e. ran ( k e. ZZ |-> ( k .x. A ) ) ( P .x. C ) = ( w ( -g ` G ) s ) <-> E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) |
49 |
42 48
|
bitrdi |
|- ( ph -> ( E. s e. S ( P .x. C ) = ( w ( -g ` G ) s ) <-> E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) ) |
50 |
49
|
rexbidv |
|- ( ph -> ( E. w e. W E. s e. S ( P .x. C ) = ( w ( -g ` G ) s ) <-> E. w e. W E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) ) |
51 |
37 50
|
mpbid |
|- ( ph -> E. w e. W E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) |
52 |
|
rexcom |
|- ( E. w e. W E. k e. ZZ ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> E. k e. ZZ E. w e. W ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) |
53 |
51 52
|
sylib |
|- ( ph -> E. k e. ZZ E. w e. W ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) ) |
54 |
22
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> G e. Grp ) |
55 |
3
|
subgss |
|- ( W e. ( SubGrp ` G ) -> W C_ B ) |
56 |
14 55
|
syl |
|- ( ph -> W C_ B ) |
57 |
56
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> W C_ B ) |
58 |
57
|
sselda |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> w e. B ) |
59 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> k e. ZZ ) |
60 |
28
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> A e. B ) |
61 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ k e. ZZ /\ A e. B ) -> ( k .x. A ) e. B ) |
62 |
54 59 60 61
|
syl3anc |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> ( k .x. A ) e. B ) |
63 |
|
pgpprm |
|- ( P pGrp G -> P e. Prime ) |
64 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
65 |
8 63 64
|
3syl |
|- ( ph -> P e. ZZ ) |
66 |
18
|
eldifad |
|- ( ph -> C e. U ) |
67 |
27 66
|
sseldd |
|- ( ph -> C e. B ) |
68 |
3 19
|
mulgcl |
|- ( ( G e. Grp /\ P e. ZZ /\ C e. B ) -> ( P .x. C ) e. B ) |
69 |
22 65 67 68
|
syl3anc |
|- ( ph -> ( P .x. C ) e. B ) |
70 |
69
|
ad2antrr |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> ( P .x. C ) e. B ) |
71 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
72 |
3 71 35
|
grpsubadd |
|- ( ( G e. Grp /\ ( w e. B /\ ( k .x. A ) e. B /\ ( P .x. C ) e. B ) ) -> ( ( w ( -g ` G ) ( k .x. A ) ) = ( P .x. C ) <-> ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) = w ) ) |
73 |
54 58 62 70 72
|
syl13anc |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> ( ( w ( -g ` G ) ( k .x. A ) ) = ( P .x. C ) <-> ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) = w ) ) |
74 |
|
eqcom |
|- ( ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> ( w ( -g ` G ) ( k .x. A ) ) = ( P .x. C ) ) |
75 |
|
eqcom |
|- ( w = ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) <-> ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) = w ) |
76 |
73 74 75
|
3bitr4g |
|- ( ( ( ph /\ k e. ZZ ) /\ w e. W ) -> ( ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> w = ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) ) ) |
77 |
76
|
rexbidva |
|- ( ( ph /\ k e. ZZ ) -> ( E. w e. W ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> E. w e. W w = ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) ) ) |
78 |
|
risset |
|- ( ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W <-> E. w e. W w = ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) ) |
79 |
77 78
|
bitr4di |
|- ( ( ph /\ k e. ZZ ) -> ( E. w e. W ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) |
80 |
79
|
rexbidva |
|- ( ph -> ( E. k e. ZZ E. w e. W ( P .x. C ) = ( w ( -g ` G ) ( k .x. A ) ) <-> E. k e. ZZ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) |
81 |
53 80
|
mpbid |
|- ( ph -> E. k e. ZZ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) |
82 |
8
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> P pGrp G ) |
83 |
9
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> G e. Abel ) |
84 |
10
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> B e. Fin ) |
85 |
11
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> ( O ` A ) = E ) |
86 |
12
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> U e. ( SubGrp ` G ) ) |
87 |
13
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> A e. U ) |
88 |
14
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> W e. ( SubGrp ` G ) ) |
89 |
15
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> ( S i^i W ) = { .0. } ) |
90 |
16
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> ( S .(+) W ) C_ U ) |
91 |
17
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> A. w e. ( SubGrp ` G ) ( ( w C. U /\ A e. w ) -> -. ( S .(+) W ) C. w ) ) |
92 |
18
|
adantr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> C e. ( U \ ( S .(+) W ) ) ) |
93 |
|
simprl |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> k e. ZZ ) |
94 |
|
simprr |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) |
95 |
|
eqid |
|- ( C ( +g ` G ) ( ( k / P ) .x. A ) ) = ( C ( +g ` G ) ( ( k / P ) .x. A ) ) |
96 |
1 2 3 4 5 6 7 82 83 84 85 86 87 88 89 90 91 92 19 93 94 95
|
pgpfac1lem3 |
|- ( ( ph /\ ( k e. ZZ /\ ( ( P .x. C ) ( +g ` G ) ( k .x. A ) ) e. W ) ) -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |
97 |
81 96
|
rexlimddv |
|- ( ph -> E. t e. ( SubGrp ` G ) ( ( S i^i t ) = { .0. } /\ ( S .(+) t ) = U ) ) |