Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac.b |
|- B = ( Base ` G ) |
2 |
|
pgpfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
pgpfac.g |
|- ( ph -> G e. Abel ) |
4 |
|
pgpfac.p |
|- ( ph -> P pGrp G ) |
5 |
|
pgpfac.f |
|- ( ph -> B e. Fin ) |
6 |
|
pgpfac.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
7 |
|
pgpfac.a |
|- ( ph -> A. t e. ( SubGrp ` G ) ( t C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
8 |
|
pgpfac.h |
|- H = ( G |`s U ) |
9 |
|
pgpfac.k |
|- K = ( mrCls ` ( SubGrp ` H ) ) |
10 |
|
pgpfac.o |
|- O = ( od ` H ) |
11 |
|
pgpfac.e |
|- E = ( gEx ` H ) |
12 |
|
pgpfac.0 |
|- .0. = ( 0g ` H ) |
13 |
|
pgpfac.l |
|- .(+) = ( LSSum ` H ) |
14 |
|
pgpfac.1 |
|- ( ph -> E =/= 1 ) |
15 |
|
pgpfac.x |
|- ( ph -> X e. U ) |
16 |
|
pgpfac.oe |
|- ( ph -> ( O ` X ) = E ) |
17 |
|
pgpfac.w |
|- ( ph -> W e. ( SubGrp ` H ) ) |
18 |
|
pgpfac.i |
|- ( ph -> ( ( K ` { X } ) i^i W ) = { .0. } ) |
19 |
|
pgpfac.s |
|- ( ph -> ( ( K ` { X } ) .(+) W ) = U ) |
20 |
8
|
subsubg |
|- ( U e. ( SubGrp ` G ) -> ( W e. ( SubGrp ` H ) <-> ( W e. ( SubGrp ` G ) /\ W C_ U ) ) ) |
21 |
6 20
|
syl |
|- ( ph -> ( W e. ( SubGrp ` H ) <-> ( W e. ( SubGrp ` G ) /\ W C_ U ) ) ) |
22 |
17 21
|
mpbid |
|- ( ph -> ( W e. ( SubGrp ` G ) /\ W C_ U ) ) |
23 |
22
|
simprd |
|- ( ph -> W C_ U ) |
24 |
1
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
25 |
6 24
|
syl |
|- ( ph -> U C_ B ) |
26 |
5 25
|
ssfid |
|- ( ph -> U e. Fin ) |
27 |
26 23
|
ssfid |
|- ( ph -> W e. Fin ) |
28 |
|
hashcl |
|- ( W e. Fin -> ( # ` W ) e. NN0 ) |
29 |
27 28
|
syl |
|- ( ph -> ( # ` W ) e. NN0 ) |
30 |
29
|
nn0red |
|- ( ph -> ( # ` W ) e. RR ) |
31 |
12
|
fvexi |
|- .0. e. _V |
32 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
33 |
31 32
|
ax-mp |
|- ( # ` { .0. } ) = 1 |
34 |
|
subgrcl |
|- ( W e. ( SubGrp ` H ) -> H e. Grp ) |
35 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
36 |
35
|
subgacs |
|- ( H e. Grp -> ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) ) |
37 |
|
acsmre |
|- ( ( SubGrp ` H ) e. ( ACS ` ( Base ` H ) ) -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
38 |
17 34 36 37
|
4syl |
|- ( ph -> ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) ) |
39 |
38 9
|
mrcssvd |
|- ( ph -> ( K ` { X } ) C_ ( Base ` H ) ) |
40 |
8
|
subgbas |
|- ( U e. ( SubGrp ` G ) -> U = ( Base ` H ) ) |
41 |
6 40
|
syl |
|- ( ph -> U = ( Base ` H ) ) |
42 |
39 41
|
sseqtrrd |
|- ( ph -> ( K ` { X } ) C_ U ) |
43 |
26 42
|
ssfid |
|- ( ph -> ( K ` { X } ) e. Fin ) |
44 |
15 41
|
eleqtrd |
|- ( ph -> X e. ( Base ` H ) ) |
45 |
9
|
mrcsncl |
|- ( ( ( SubGrp ` H ) e. ( Moore ` ( Base ` H ) ) /\ X e. ( Base ` H ) ) -> ( K ` { X } ) e. ( SubGrp ` H ) ) |
46 |
38 44 45
|
syl2anc |
|- ( ph -> ( K ` { X } ) e. ( SubGrp ` H ) ) |
47 |
12
|
subg0cl |
|- ( ( K ` { X } ) e. ( SubGrp ` H ) -> .0. e. ( K ` { X } ) ) |
48 |
46 47
|
syl |
|- ( ph -> .0. e. ( K ` { X } ) ) |
49 |
48
|
snssd |
|- ( ph -> { .0. } C_ ( K ` { X } ) ) |
50 |
44
|
snssd |
|- ( ph -> { X } C_ ( Base ` H ) ) |
51 |
38 9 50
|
mrcssidd |
|- ( ph -> { X } C_ ( K ` { X } ) ) |
52 |
|
snssg |
|- ( X e. U -> ( X e. ( K ` { X } ) <-> { X } C_ ( K ` { X } ) ) ) |
53 |
15 52
|
syl |
|- ( ph -> ( X e. ( K ` { X } ) <-> { X } C_ ( K ` { X } ) ) ) |
54 |
51 53
|
mpbird |
|- ( ph -> X e. ( K ` { X } ) ) |
55 |
16 14
|
eqnetrd |
|- ( ph -> ( O ` X ) =/= 1 ) |
56 |
10 12
|
od1 |
|- ( H e. Grp -> ( O ` .0. ) = 1 ) |
57 |
17 34 56
|
3syl |
|- ( ph -> ( O ` .0. ) = 1 ) |
58 |
|
elsni |
|- ( X e. { .0. } -> X = .0. ) |
59 |
58
|
fveqeq2d |
|- ( X e. { .0. } -> ( ( O ` X ) = 1 <-> ( O ` .0. ) = 1 ) ) |
60 |
57 59
|
syl5ibrcom |
|- ( ph -> ( X e. { .0. } -> ( O ` X ) = 1 ) ) |
61 |
60
|
necon3ad |
|- ( ph -> ( ( O ` X ) =/= 1 -> -. X e. { .0. } ) ) |
62 |
55 61
|
mpd |
|- ( ph -> -. X e. { .0. } ) |
63 |
49 54 62
|
ssnelpssd |
|- ( ph -> { .0. } C. ( K ` { X } ) ) |
64 |
|
php3 |
|- ( ( ( K ` { X } ) e. Fin /\ { .0. } C. ( K ` { X } ) ) -> { .0. } ~< ( K ` { X } ) ) |
65 |
43 63 64
|
syl2anc |
|- ( ph -> { .0. } ~< ( K ` { X } ) ) |
66 |
|
snfi |
|- { .0. } e. Fin |
67 |
|
hashsdom |
|- ( ( { .0. } e. Fin /\ ( K ` { X } ) e. Fin ) -> ( ( # ` { .0. } ) < ( # ` ( K ` { X } ) ) <-> { .0. } ~< ( K ` { X } ) ) ) |
68 |
66 43 67
|
sylancr |
|- ( ph -> ( ( # ` { .0. } ) < ( # ` ( K ` { X } ) ) <-> { .0. } ~< ( K ` { X } ) ) ) |
69 |
65 68
|
mpbird |
|- ( ph -> ( # ` { .0. } ) < ( # ` ( K ` { X } ) ) ) |
70 |
33 69
|
eqbrtrrid |
|- ( ph -> 1 < ( # ` ( K ` { X } ) ) ) |
71 |
|
1red |
|- ( ph -> 1 e. RR ) |
72 |
|
hashcl |
|- ( ( K ` { X } ) e. Fin -> ( # ` ( K ` { X } ) ) e. NN0 ) |
73 |
43 72
|
syl |
|- ( ph -> ( # ` ( K ` { X } ) ) e. NN0 ) |
74 |
73
|
nn0red |
|- ( ph -> ( # ` ( K ` { X } ) ) e. RR ) |
75 |
12
|
subg0cl |
|- ( W e. ( SubGrp ` H ) -> .0. e. W ) |
76 |
|
ne0i |
|- ( .0. e. W -> W =/= (/) ) |
77 |
17 75 76
|
3syl |
|- ( ph -> W =/= (/) ) |
78 |
|
hashnncl |
|- ( W e. Fin -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
79 |
27 78
|
syl |
|- ( ph -> ( ( # ` W ) e. NN <-> W =/= (/) ) ) |
80 |
77 79
|
mpbird |
|- ( ph -> ( # ` W ) e. NN ) |
81 |
80
|
nngt0d |
|- ( ph -> 0 < ( # ` W ) ) |
82 |
|
ltmul1 |
|- ( ( 1 e. RR /\ ( # ` ( K ` { X } ) ) e. RR /\ ( ( # ` W ) e. RR /\ 0 < ( # ` W ) ) ) -> ( 1 < ( # ` ( K ` { X } ) ) <-> ( 1 x. ( # ` W ) ) < ( ( # ` ( K ` { X } ) ) x. ( # ` W ) ) ) ) |
83 |
71 74 30 81 82
|
syl112anc |
|- ( ph -> ( 1 < ( # ` ( K ` { X } ) ) <-> ( 1 x. ( # ` W ) ) < ( ( # ` ( K ` { X } ) ) x. ( # ` W ) ) ) ) |
84 |
70 83
|
mpbid |
|- ( ph -> ( 1 x. ( # ` W ) ) < ( ( # ` ( K ` { X } ) ) x. ( # ` W ) ) ) |
85 |
30
|
recnd |
|- ( ph -> ( # ` W ) e. CC ) |
86 |
85
|
mulid2d |
|- ( ph -> ( 1 x. ( # ` W ) ) = ( # ` W ) ) |
87 |
|
eqid |
|- ( Cntz ` H ) = ( Cntz ` H ) |
88 |
8
|
subgabl |
|- ( ( G e. Abel /\ U e. ( SubGrp ` G ) ) -> H e. Abel ) |
89 |
3 6 88
|
syl2anc |
|- ( ph -> H e. Abel ) |
90 |
87 89 46 17
|
ablcntzd |
|- ( ph -> ( K ` { X } ) C_ ( ( Cntz ` H ) ` W ) ) |
91 |
13 12 87 46 17 18 90 43 27
|
lsmhash |
|- ( ph -> ( # ` ( ( K ` { X } ) .(+) W ) ) = ( ( # ` ( K ` { X } ) ) x. ( # ` W ) ) ) |
92 |
19
|
fveq2d |
|- ( ph -> ( # ` ( ( K ` { X } ) .(+) W ) ) = ( # ` U ) ) |
93 |
91 92
|
eqtr3d |
|- ( ph -> ( ( # ` ( K ` { X } ) ) x. ( # ` W ) ) = ( # ` U ) ) |
94 |
84 86 93
|
3brtr3d |
|- ( ph -> ( # ` W ) < ( # ` U ) ) |
95 |
30 94
|
ltned |
|- ( ph -> ( # ` W ) =/= ( # ` U ) ) |
96 |
|
fveq2 |
|- ( W = U -> ( # ` W ) = ( # ` U ) ) |
97 |
96
|
necon3i |
|- ( ( # ` W ) =/= ( # ` U ) -> W =/= U ) |
98 |
95 97
|
syl |
|- ( ph -> W =/= U ) |
99 |
|
df-pss |
|- ( W C. U <-> ( W C_ U /\ W =/= U ) ) |
100 |
23 98 99
|
sylanbrc |
|- ( ph -> W C. U ) |
101 |
|
psseq1 |
|- ( t = W -> ( t C. U <-> W C. U ) ) |
102 |
|
eqeq2 |
|- ( t = W -> ( ( G DProd s ) = t <-> ( G DProd s ) = W ) ) |
103 |
102
|
anbi2d |
|- ( t = W -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = W ) ) ) |
104 |
103
|
rexbidv |
|- ( t = W -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = W ) ) ) |
105 |
101 104
|
imbi12d |
|- ( t = W -> ( ( t C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( W C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = W ) ) ) ) |
106 |
22
|
simpld |
|- ( ph -> W e. ( SubGrp ` G ) ) |
107 |
105 7 106
|
rspcdva |
|- ( ph -> ( W C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = W ) ) ) |
108 |
100 107
|
mpd |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = W ) ) |
109 |
|
breq2 |
|- ( s = a -> ( G dom DProd s <-> G dom DProd a ) ) |
110 |
|
oveq2 |
|- ( s = a -> ( G DProd s ) = ( G DProd a ) ) |
111 |
110
|
eqeq1d |
|- ( s = a -> ( ( G DProd s ) = W <-> ( G DProd a ) = W ) ) |
112 |
109 111
|
anbi12d |
|- ( s = a -> ( ( G dom DProd s /\ ( G DProd s ) = W ) <-> ( G dom DProd a /\ ( G DProd a ) = W ) ) ) |
113 |
112
|
cbvrexvw |
|- ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = W ) <-> E. a e. Word C ( G dom DProd a /\ ( G DProd a ) = W ) ) |
114 |
108 113
|
sylib |
|- ( ph -> E. a e. Word C ( G dom DProd a /\ ( G DProd a ) = W ) ) |
115 |
3
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> G e. Abel ) |
116 |
4
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> P pGrp G ) |
117 |
5
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> B e. Fin ) |
118 |
6
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> U e. ( SubGrp ` G ) ) |
119 |
7
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> A. t e. ( SubGrp ` G ) ( t C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
120 |
14
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> E =/= 1 ) |
121 |
15
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> X e. U ) |
122 |
16
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> ( O ` X ) = E ) |
123 |
17
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> W e. ( SubGrp ` H ) ) |
124 |
18
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> ( ( K ` { X } ) i^i W ) = { .0. } ) |
125 |
19
|
adantr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> ( ( K ` { X } ) .(+) W ) = U ) |
126 |
|
simprl |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> a e. Word C ) |
127 |
|
simprrl |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> G dom DProd a ) |
128 |
|
simprrr |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> ( G DProd a ) = W ) |
129 |
|
eqid |
|- ( a ++ <" ( K ` { X } ) "> ) = ( a ++ <" ( K ` { X } ) "> ) |
130 |
1 2 115 116 117 118 119 8 9 10 11 12 13 120 121 122 123 124 125 126 127 128 129
|
pgpfaclem1 |
|- ( ( ph /\ ( a e. Word C /\ ( G dom DProd a /\ ( G DProd a ) = W ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
131 |
114 130
|
rexlimddv |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |