Step |
Hyp |
Ref |
Expression |
1 |
|
pgpfac.b |
|- B = ( Base ` G ) |
2 |
|
pgpfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
3 |
|
pgpfac.g |
|- ( ph -> G e. Abel ) |
4 |
|
pgpfac.p |
|- ( ph -> P pGrp G ) |
5 |
|
pgpfac.f |
|- ( ph -> B e. Fin ) |
6 |
|
pgpfac.u |
|- ( ph -> U e. ( SubGrp ` G ) ) |
7 |
|
pgpfac.a |
|- ( ph -> A. t e. ( SubGrp ` G ) ( t C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
8 |
|
wrd0 |
|- (/) e. Word C |
9 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
10 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
11 |
10
|
dprd0 |
|- ( G e. Grp -> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
12 |
3 9 11
|
3syl |
|- ( ph -> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
14 |
10
|
subg0cl |
|- ( U e. ( SubGrp ` G ) -> ( 0g ` G ) e. U ) |
15 |
6 14
|
syl |
|- ( ph -> ( 0g ` G ) e. U ) |
16 |
15
|
adantr |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( 0g ` G ) e. U ) |
17 |
|
eqid |
|- ( G |`s U ) = ( G |`s U ) |
18 |
17
|
subgbas |
|- ( U e. ( SubGrp ` G ) -> U = ( Base ` ( G |`s U ) ) ) |
19 |
6 18
|
syl |
|- ( ph -> U = ( Base ` ( G |`s U ) ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> U = ( Base ` ( G |`s U ) ) ) |
21 |
17
|
subggrp |
|- ( U e. ( SubGrp ` G ) -> ( G |`s U ) e. Grp ) |
22 |
6 21
|
syl |
|- ( ph -> ( G |`s U ) e. Grp ) |
23 |
|
grpmnd |
|- ( ( G |`s U ) e. Grp -> ( G |`s U ) e. Mnd ) |
24 |
|
eqid |
|- ( Base ` ( G |`s U ) ) = ( Base ` ( G |`s U ) ) |
25 |
|
eqid |
|- ( gEx ` ( G |`s U ) ) = ( gEx ` ( G |`s U ) ) |
26 |
24 25
|
gex1 |
|- ( ( G |`s U ) e. Mnd -> ( ( gEx ` ( G |`s U ) ) = 1 <-> ( Base ` ( G |`s U ) ) ~~ 1o ) ) |
27 |
22 23 26
|
3syl |
|- ( ph -> ( ( gEx ` ( G |`s U ) ) = 1 <-> ( Base ` ( G |`s U ) ) ~~ 1o ) ) |
28 |
27
|
biimpa |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( Base ` ( G |`s U ) ) ~~ 1o ) |
29 |
20 28
|
eqbrtrd |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> U ~~ 1o ) |
30 |
|
en1eqsn |
|- ( ( ( 0g ` G ) e. U /\ U ~~ 1o ) -> U = { ( 0g ` G ) } ) |
31 |
16 29 30
|
syl2anc |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> U = { ( 0g ` G ) } ) |
32 |
31
|
eqeq2d |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( ( G DProd (/) ) = U <-> ( G DProd (/) ) = { ( 0g ` G ) } ) ) |
33 |
32
|
anbi2d |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( ( G dom DProd (/) /\ ( G DProd (/) ) = U ) <-> ( G dom DProd (/) /\ ( G DProd (/) ) = { ( 0g ` G ) } ) ) ) |
34 |
13 33
|
mpbird |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> ( G dom DProd (/) /\ ( G DProd (/) ) = U ) ) |
35 |
|
breq2 |
|- ( s = (/) -> ( G dom DProd s <-> G dom DProd (/) ) ) |
36 |
|
oveq2 |
|- ( s = (/) -> ( G DProd s ) = ( G DProd (/) ) ) |
37 |
36
|
eqeq1d |
|- ( s = (/) -> ( ( G DProd s ) = U <-> ( G DProd (/) ) = U ) ) |
38 |
35 37
|
anbi12d |
|- ( s = (/) -> ( ( G dom DProd s /\ ( G DProd s ) = U ) <-> ( G dom DProd (/) /\ ( G DProd (/) ) = U ) ) ) |
39 |
38
|
rspcev |
|- ( ( (/) e. Word C /\ ( G dom DProd (/) /\ ( G DProd (/) ) = U ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
40 |
8 34 39
|
sylancr |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) = 1 ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
41 |
17
|
subgabl |
|- ( ( G e. Abel /\ U e. ( SubGrp ` G ) ) -> ( G |`s U ) e. Abel ) |
42 |
3 6 41
|
syl2anc |
|- ( ph -> ( G |`s U ) e. Abel ) |
43 |
1
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ B ) |
44 |
6 43
|
syl |
|- ( ph -> U C_ B ) |
45 |
5 44
|
ssfid |
|- ( ph -> U e. Fin ) |
46 |
19 45
|
eqeltrrd |
|- ( ph -> ( Base ` ( G |`s U ) ) e. Fin ) |
47 |
24 25
|
gexcl2 |
|- ( ( ( G |`s U ) e. Grp /\ ( Base ` ( G |`s U ) ) e. Fin ) -> ( gEx ` ( G |`s U ) ) e. NN ) |
48 |
22 46 47
|
syl2anc |
|- ( ph -> ( gEx ` ( G |`s U ) ) e. NN ) |
49 |
|
eqid |
|- ( od ` ( G |`s U ) ) = ( od ` ( G |`s U ) ) |
50 |
24 25 49
|
gexex |
|- ( ( ( G |`s U ) e. Abel /\ ( gEx ` ( G |`s U ) ) e. NN ) -> E. x e. ( Base ` ( G |`s U ) ) ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) |
51 |
42 48 50
|
syl2anc |
|- ( ph -> E. x e. ( Base ` ( G |`s U ) ) ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) |
52 |
51
|
adantr |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) -> E. x e. ( Base ` ( G |`s U ) ) ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) |
53 |
|
eqid |
|- ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) = ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) |
54 |
|
eqid |
|- ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) = ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) |
55 |
|
eqid |
|- ( 0g ` ( G |`s U ) ) = ( 0g ` ( G |`s U ) ) |
56 |
|
eqid |
|- ( LSSum ` ( G |`s U ) ) = ( LSSum ` ( G |`s U ) ) |
57 |
|
subgpgp |
|- ( ( P pGrp G /\ U e. ( SubGrp ` G ) ) -> P pGrp ( G |`s U ) ) |
58 |
4 6 57
|
syl2anc |
|- ( ph -> P pGrp ( G |`s U ) ) |
59 |
58
|
ad2antrr |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> P pGrp ( G |`s U ) ) |
60 |
42
|
ad2antrr |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> ( G |`s U ) e. Abel ) |
61 |
46
|
ad2antrr |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> ( Base ` ( G |`s U ) ) e. Fin ) |
62 |
|
simprr |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) |
63 |
|
simprl |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> x e. ( Base ` ( G |`s U ) ) ) |
64 |
53 54 24 49 25 55 56 59 60 61 62 63
|
pgpfac1 |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> E. w e. ( SubGrp ` ( G |`s U ) ) ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) |
65 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> G e. Abel ) |
66 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> P pGrp G ) |
67 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> B e. Fin ) |
68 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> U e. ( SubGrp ` G ) ) |
69 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> A. t e. ( SubGrp ` G ) ( t C. U -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
70 |
|
simpllr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> ( gEx ` ( G |`s U ) ) =/= 1 ) |
71 |
|
simplrl |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> x e. ( Base ` ( G |`s U ) ) ) |
72 |
68 18
|
syl |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> U = ( Base ` ( G |`s U ) ) ) |
73 |
71 72
|
eleqtrrd |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> x e. U ) |
74 |
|
simplrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) |
75 |
|
simprl |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> w e. ( SubGrp ` ( G |`s U ) ) ) |
76 |
|
simprrl |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } ) |
77 |
|
simprrr |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) |
78 |
77 72
|
eqtr4d |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = U ) |
79 |
1 2 65 66 67 68 69 17 53 49 25 55 56 70 73 74 75 76 78
|
pgpfaclem2 |
|- ( ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) /\ ( w e. ( SubGrp ` ( G |`s U ) ) /\ ( ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) i^i w ) = { ( 0g ` ( G |`s U ) ) } /\ ( ( ( mrCls ` ( SubGrp ` ( G |`s U ) ) ) ` { x } ) ( LSSum ` ( G |`s U ) ) w ) = ( Base ` ( G |`s U ) ) ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
80 |
64 79
|
rexlimddv |
|- ( ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) /\ ( x e. ( Base ` ( G |`s U ) ) /\ ( ( od ` ( G |`s U ) ) ` x ) = ( gEx ` ( G |`s U ) ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
81 |
52 80
|
rexlimddv |
|- ( ( ph /\ ( gEx ` ( G |`s U ) ) =/= 1 ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |
82 |
40 81
|
pm2.61dane |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = U ) ) |